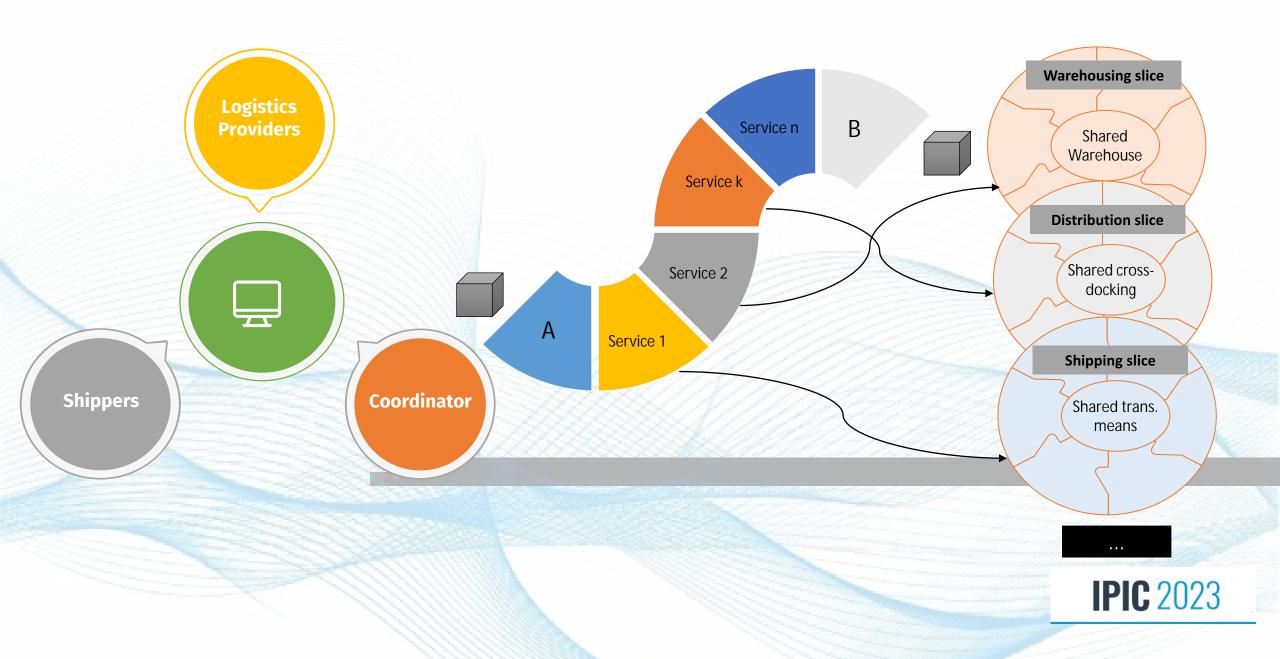


IPIC 2023

9th International Physical Internet Conference

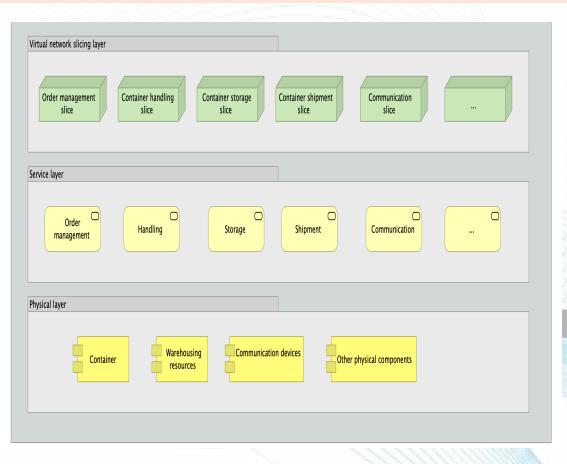
> June 13-15, 2023 Athens, Greece

Routing and network-slicing-based protocols for the Physical Internet network


By Fatima-Ezzahra Achamrah, Mariam Lafkihi & Eric Ballot

June 14, 2023

Context


Context В Service n Service k Warehousing slice Service 2 **Distribution slice** Service 1 **Shipping slice**

<u>Containers</u> or shipments have to be <u>allocated</u> to resources and delivered to customers while guaranteeing an end-to-end services, considering route-constraints (e.g., capacity, costs, lead time), and ever **changing** environments, i.e., <u>disruptions</u> (e.g., emergency or cancelled orders, hub unserviceability, transportation means unavailability).

Resources and shipments are considered to be able to compute decisions within a legal framework: they are supposed to coordinate with other entities in the network about routes and loads allocation based on actual context and local knowledge (known state of the system); centralized decision-making can no longer be applied.

Network-Slicing-Based Protocol

Network slicing allows the creation of **multiple virtual networks** with a **common physical infrastructure**, each optimized for **specific services** or user groups, aiming at providing customized and more efficient **end-to-end services** and **allocating the network cost** to the different deployed slices.

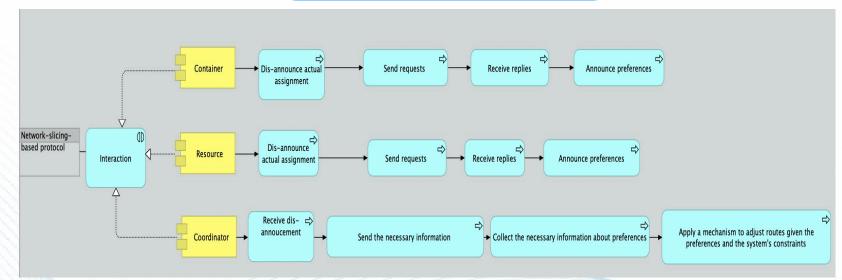
It is well-suited for use cases that require customized and more efficient **end-to-end services**

It involves the allocation of **dedicated resources** and the deployment of a wide range of services with **varying requirements**

It provides a high level of granularity, allowing coordinators to define and manage multiple network slices with distinct characteristics.

It requires a comprehensive management and orchestration framework to handle the lifecycle of network slices, including slice creation, configuration, monitoring, and scaling.

Network-Slicing-Based Protocol


Disruption management & preference integration

Slice creation

Based on the service layer requirements

Allocating resources in a slice

MCDM and assignment algorithms while minimizing logistics costs and CO2 emission

Examples of reactive assignment algorithms designed to offer good-quality solutions with simple computational capabilities.

Algorithm 1 Assignment algorithm in normal scenarios

```
...1: Assign_each_downstream_location_(i.e._destinations)_to a hub
                                                                                               _b_using_the_clustering_algorithm
 2: Load orders into best-fit containers

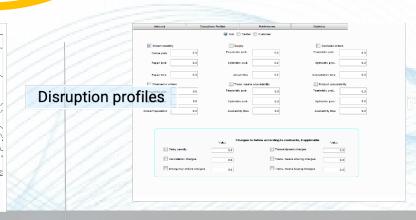
    b using containerization protocol described in Sarraj et al. (2014a)

 3: HubList \leftarrow List of hubs
 4: ContainerList ← List of containers
 5: VehicleList ← List of vehicles
 6: V<sub>k</sub> ← Maximum volume capacity of vehicle k
 7: W_k \leftarrow Maximum weight capacity of vehicle k
 8: for each h \in HuhList do
       for each k \in VehicleList do
           L^k \leftarrow New empty list of containers to be transported by k
           for each container p leaving h do
              v \leftarrow \text{Volume of container } p
               w ← Weight of container p
               if V_k \geq v and W_k \geq w then
                   Append p to L^k
16:
                   V_{\nu} \leftarrow V_{\nu} - v
                   W_k \leftarrow W_k - w
                   ContainerList \leftarrow \text{removing container } p \text{ from } ContainerList
18-
19:
20:
           end for state L^k —construct and optimize the sequence of destinations to visit using neighborhood search
   operators
                                                                                               ⊳ refer to (Dumez et al., 2021)
21: end for
22: end for
23: Return constructed routes with the corresponding total cost and arrival time
```

Algorithm 2 TOPSIS's steps

- 1: Acquire each alternative i and criterion j
- 2: Construct normalized decision matrix:
- $\frac{x_{ij}}{\sqrt{\sum x_{ij}^2}}$ with r_{ij} and x_{ij} are original and normalized score of decision matrix resp.
- 4: Construct the weighted normalized decision matrix:
- 5: $v_{ij} \leftarrow w_i r_{ij}$ with w_i is the weight for j criterion
- 6: Determine the positive ideal and negative ideal solutions:
- 7: Positive ideal solution: $A^* \leftarrow \{v_1^*, ..., v_n^*\}$ with $v_i^* = \{max(v_{ij}), ifj \in J; min(v_{ij}), if \in J'\}$ (Hwang and Yoon, 1981; Behzadian et al., 2012) for further details

- Algorithm 3 Assignment algorithm with transshipment
- □ using containerization protocol described in Sarrai et al.
- $L^k \leftarrow \text{New}$ empty list of containers to be transported by k $L^k_{pq} \leftarrow \text{New}$ empty list of hubs to be visited for pickup and delivery by k index_p, \leftarrow index of the hub(s) where orderswill be picked from, and
- orders will delivered to, if applicable HubListPK for each container p leaving h do $v^* \leftarrow \text{Volume of container } p$ $w^* \leftarrow \text{Weight of container } p$ if $V_k \geq v^*$ and $W_k \geq w^*$ then Append p to L^k
- Append $index_{h'}$ to L_{pe}^k $V_k \leftarrow V_k v^*$ $\hat{W_k} \leftarrow \hat{W}_k - w^*$ $ContainerList \leftarrow$ removing container p from ContainerList
- end for end for state $L^k \leftarrow$ construct and optimize the sequence of hubs and destinations to visit 28: using neighborhood search operators
 29: end for
 30: Return constructed routes with the corresponding total cost and arrival time ▷ refer to (Dumez et al., 2021)


Experiments

Using a muli agent simulation, and data from major French retail chains Carrefour and Casino and their 106 largest suppliers,

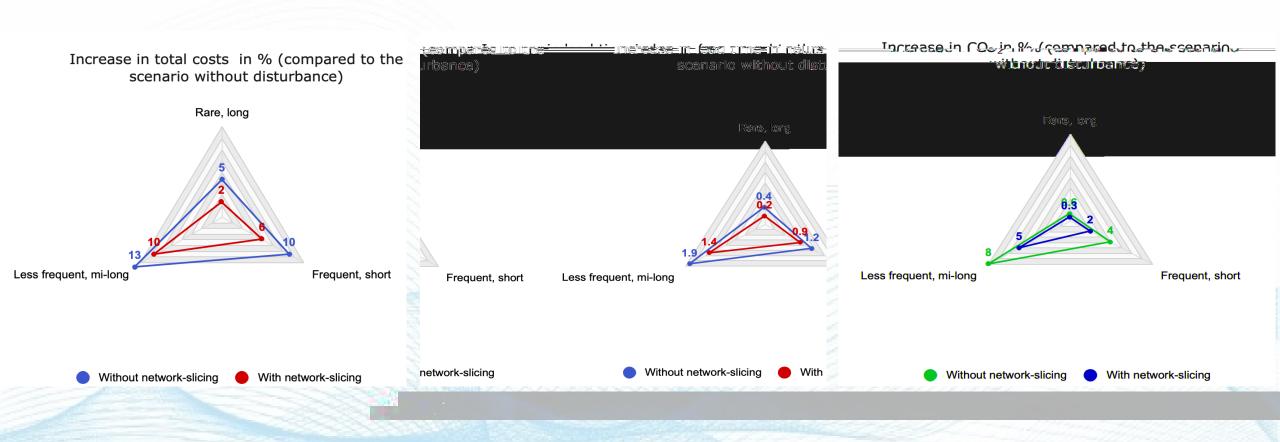
Network

Preference

- 303 plants, 57 warehouses, and 58 distribution centers across France.
- Three products: liquids, groceries, and personal and home care.
- 2,582,692 full pallets are routed.
- 211,167 orders of 702 different products, accounting for approximately 20% of French FMCG market share for the considered product families.

Assessing the performance of the protocols

Statistic


Experiments: Simplified Example

- A 7-day simulation, 10 plants, 10 warehouses, 10 carriers (trains and trucks), 1000 orders of 5 different products to ship, and only storing and shipping services.
- We evaluate the performance of the proposed protocols in absence and presence of disturbance, namely, hub resource breakdown.
- We evaluate the performance of the proposed protocols in presence of disturbance, namely, hub breakdown. We consider long, rare; less frequent, mi-long and frequent, short disturbance profiles.

#	Breakdown prob.	Repair prob.	Average dur. (hour)	Lost capacity of PI	Description
1	1%	30%	3.1	3%	Rare, very long
2	10%	70%	1.4	13%	Less frequent, mi-long
3	20%	90%	1.1	18%	Frequent, short

- The performance is evaluated using three key performance indicators, namely, increase in total cost (i.e., transportation and storage), in lead time, and CO₂ emissions.
- Two scenarios are evaluated:
 - Without network-slicing: locally optimizing resources allocation.
 - With network-slicing: optimizing resources allocation for all slices.

Experiments

Conclusions & Perspectives

- A network slicing-based protocol for more efficient resource allocation and management and to guide individual self-interested decisions toward a system-wide common goal.
- A dynamic and reactive protocol to consider various contexts, such as disturbing events, route constraints, and PI actors' preferences and local knowledge of the system's state.

- Future research should investigate the trade-offs in implementing logistics network slicing while considering decentralized protocol and managing disruptions.
- Investigate other classes of operational disruptions, but also tactical and strategic ones, along with reactive alternatives that have yet to be investigated.
- Generalize the scope to the case where multiple coordinators (i.e., platforms) provide communication and container delivery in and between several PI sub-networks.
- Generalize the scope to cover and compare on-demand and scheduled services;
- Capitalize on data collected, using the routing tables, to assist the disturbance management by using similarities and accurate predictions (e.g., reinforcement learning, transfer learning, or case and rule-based reasoning).

