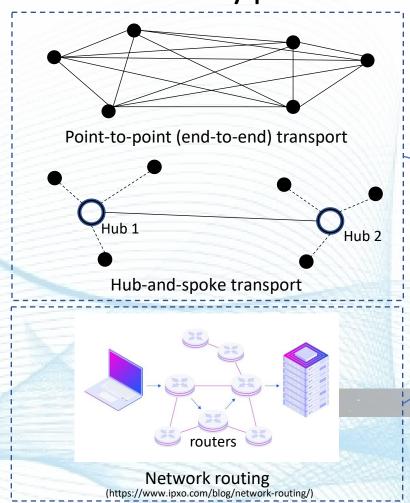


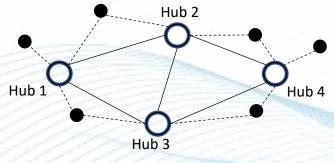
**IPIC** 2023

9th International Physical Internet Conference

> June 13-15, 2023 Athens, Greece




Stochastic Service Network Design with Different Operational Patterns for Hyperconnected Relay Transportation

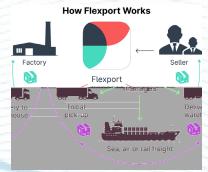

Jingze Li, Xiaoyue Liu, Mathieu Dahan, Benoit Montreuil Physical Internet Center, Georgia Tech, United States of America

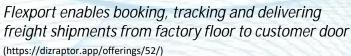




### Towards hyperconnected relay transportation







Hyperconnected relay transport

Inspired by Physical Internet [1], hyperconnected relay transport enables more consolidation opportunities, flexible delivery options, higher transportation efficiency and truckers' daily returning home, etc.

# Logistics platform for implementing hyperconnected relay transport

 An increasing number of logistics platforms streamline market access, simplify load matching, enhance shipment visibility, and increase delivery efficiency.







Amazon Relay makes short-term contracts with carriers and allows drivers to access loads at no cost and to get back home https://relay.amazon.com



Uber Freight connects shippers to massive competitive carriers in the open market

https://www.freightwaves.com/news/technology/uber-freight-launches-fleet-mode-tool-that-caters-to-small-fleet-owners

This paper explores the application of a logistics platform (called hyperconnected logistics platform)
to facilitate the implementation of hyperconnected relay transport.

### Towards truck-based hyperconnected service network

Vale propositions to three stakeholders of hyperconnected logistics platform Shippers To express transportation needs for the foreseeable future

Carriers Too secure contracts, revenues, and shipments for their truckers

Drivers To return home consistently and gain visibility of upcoming tasks

This paper proposes a methodology for optimizing the platform's tactical decisions of designing hyperconnected service network to persistently achieving its goals and value propositions.

### Literature review – hyperconnected relay transport

## Concept research

## Assessment research

## Solution design research

Physical Internet and Hyperconnectivity

- Montreuil, 2011
- Montreuil et al., 2018

Economic, environmental, and societal performances through simulation-based experiments

- Hakimi et al., 2012
- Sarraj et al., 2014
- Hakimi et al., 2015

Key planning and operational decisions induced by the concept of the Physical Internet

- Qiao et al., 2016
- Orenstein et al., 2022
- Li et al., 2022

In this paper, we consider how to plan logistics services and make contracts with carriers given demand uncertainty, within the novel business context of a hyperconnected logistics platform

• Hub operational patterns, schedule consistency, hauling capacities, as well as their impacts on the hyperconnected service network design

### Literature review – service network design problem

- Service network design problem (SNDP) involves planning routing and scheduling of services and shipments through a network of terminals
  - Many researchers have approached the modeling of the SNDP by utilizing the time-space network formulation and incorporating customized rules for various settings (Scherr et al., 2019; Medina et al., 2019)
- Stochastic service network design problem (SSNDP)
  - Two common sources: demands (Bai et al., 2014; Wang et al., 2016) and traffic time (Lanza et al. 2021)
- In this paper, we focus on demand uncertainty in developing consistent approximate schedules, referred to as services, for contracted short-haul truckers.
  - Modelling as an "Inherently two-stage problem" (King and Wallace, 2012), which simplifies the multi-stage nature of the real problem
  - Listing refining approximate schedules as one of future works. Such idea of approximation-then-refining is inspired by Bolan et al., 2017.

### Relay hub network, planning horizon, and commodities

- The logistics platform manages the logistics service over a provided relay hub network,  $\mathcal{G}^P=(\mathcal{N}^P,\mathcal{A}^P)$ , where
  - $\mathcal{N}^P$  represents hub nodes
  - $\mathcal{A}^P$  represents connected arcs between hub nodes
- A planning horizon is considered and discretized into T+1 evenly distributed time instants, denoted as  $\mathcal{T}=\{0,1,\dots,T\}$
- The platform receives the transportation requests for multiple commodities. Each commodity  $k \in \mathcal{K}$  has an origin hub  $o_k$ , a destination hub  $d_k$ , an entry time  $t_k^e$ , a due time  $t_k^d$  and volume  $v_k$ .
  - All commodities are expected to be delivered on time
  - The platform can either ship each commodity by itself or outsource it to third-party logistics carriers.

### Time-space network and services

ullet The model formulation is based on a time-space network  $\mathcal{G}=$ 

### Three different operational patterns

|                         |                 | Freight loading an                                                                                                                                                  | Hauler swapping                                                                                                                                                     |                                                                                                                                                                            |  |
|-------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Operational requirement | :S              | Multiple commodity paths (FLU-MCP)  Drivers stay with trucks (tractors/haulers) Commodities can be split into multiple paths for delivery                           | Single commodity path (FLU-SCP)  Drivers stay with trucks (tractors/haulers) Commodities are delivered through a unique path                                        | (HS)  Haulers can separate from truckers (drivers/tractors)  Commodities stay with haulers from originate destination                                                      |  |
| Decision<br>variables   | First<br>stage  | $X_s \in \mathbb{Z}^+$ : number of drivers contracted to service $s, \forall s \in \mathcal{S}$                                                                     | $X_s \in \mathbb{Z}^+$ : number of drivers contracted to service $s, \forall s \in \mathcal{S}$                                                                     | $X_s \in \mathbb{Z}^+$ : number of truckers (drivers/tractors) contracted to service $s, \forall s \in \mathcal{S}$                                                        |  |
|                         | Second<br>stage | $Y_{su}(w) \in \mathbb{Z}^+$ : number of trucks with size $u$ rent for service $s$ in scenario $w, \forall s \in \mathcal{S}, u \in \mathcal{U}, w \in \mathcal{W}$ | $Y_{su}(w) \in \mathbb{Z}^+$ : number of trucks with size $u$ rent for service $s$ in scenario $w, \forall s \in \mathcal{S}, u \in \mathcal{U}, w \in \mathcal{W}$ | $Y_{ku}(w) \in \mathbb{Z}^+$ : number of haulers with size $u$ rent for commodity $k$ in scenario $w, \forall k \in \mathcal{K}, u \in \mathcal{U}, w \in \mathcal{W}$     |  |
|                         |                 | $F_{ka}(w) \in \mathbb{Z}^+$ : volume of commodity $k$ traversing arc $a$ in scenario $w, \forall k \in \mathcal{K}, a \in \mathcal{A}, w \in \mathcal{W}$          | $F_{ka}(w) \in \mathbb{Z}^+$ : volume of commodity $k$ traversing arc $a$ in scenario $w, \forall k \in \mathcal{K}, a \in \mathcal{A}, w \in \mathcal{W}$          | $F_{ka}(w) \in \mathbb{Z}^+$ : number of haulers holding commodity $k$ traversing arc $a$ in scenario $w, \forall k \in \mathcal{K}, a \in \mathcal{A}, w \in \mathcal{W}$ |  |

### Two-Stage Programming Formulation for FLU-MCP

**Objective function** 

$$\min \sum_{s \in \mathcal{S}} c_s^f X_s + E_{w \in \mathcal{W}} \Big[ \sum_{s \in \mathcal{S}, u \in \mathcal{U}} c_{su}^v Y_{su}(w) + \sum_{k \in \mathcal{K}} c_k^o Z_k(w) \Big]$$

$$\text{Total driver contract fees} \qquad \text{Total truck rental cost} \qquad \text{Total commodity outsourcing cost}$$

$$\text{in scenario w} \qquad \text{in scenario w}$$

#### Constraints

To guarantee contracted drivers not exceeding service capacity:

$$X_s \leq q_s$$
,  $\forall s \in \mathcal{S}$ 

To rent trucks for drivers in each scenario:

$$\sum_{u \in \mathcal{U}} Y_{su}(w) \le X_s, \qquad \forall s \in \mathcal{S}, w \in \mathcal{W}$$

To satisfy truck volume capacity in each scenario:

$$\sum_{u \in \mathcal{U}} Y_{su}(w) \le X_s, \quad \forall s \in \mathcal{S}, w \in \mathcal{W}$$

$$\sum_{s \in \mathcal{S}_a, u \in \mathcal{U}} u Y_{su}(w) \ge \sum_{k \in \mathcal{K}} F_{ka}(w), \quad \forall a \in \mathcal{A}^M, w \in \mathcal{W}$$

To ensure freight flow balance and delivery timelines in each scenario:

$$\sum_{a \in \delta^{-}(n)} F_{ka}(w) - \sum_{a \in \delta^{+}(n)} F_{ka}(w) = \begin{cases} v_{k}(w)(Z_{k}(w) - 1), & \text{if } n = (o_{k}, t_{k}^{e}) \\ v_{k}(w)(1 - Z_{k}(w)), & \text{if } n = (o_{k}, t_{k}^{e}), \\ 0, & \text{o.w.} \end{cases} \forall k \in \mathcal{K}, a \in \mathcal{A}$$

To define variable domains:

$$X_s, Y_{su}(w) \in \mathbb{Z}^+, F_{ka}(w) \in \mathbb{R}^+, \quad \forall s \in \mathcal{S}, u \in \mathcal{U}, k \in \mathcal{K}, a \in \mathcal{A}$$

### Two-Stage Programming Formulation for FLU-SCP

**Objective function** 

$$\min \sum_{s \in \mathcal{S}} c_s^f X_s + E_{w \in \mathcal{W}} \Big[ \sum_{s \in \mathcal{S}, u \in \mathcal{U}} c_{su}^v Y_{su}(w) + \sum_{k \in \mathcal{K}} c_k^o Z_k(w) \Big]$$

$$\text{Total driver contract fees} \qquad \text{Total truck rental cost} \qquad \text{Total commodity outsourcing cost}$$

$$\text{in scenario w} \qquad \text{in scenario w}$$

#### Constraints

To guarantee contracted drivers not exceeding service capacity:

$$X_s \leq q_s$$
,  $\forall s \in \mathcal{S}$ 

To rent trucks for drivers in each scenario:

$$\sum_{u \in \mathcal{U}} Y_{su}(w) \le X_s, \quad \forall s \in \mathcal{S}, w \in \mathcal{W}$$

To rent trucks for drivers in each scenario: 
$$\sum_{u \in \mathcal{U}} Y_{su}(w) \leq X_s, \quad \forall s \in \mathcal{S}, w \in \mathcal{W}$$
To satisfy truck volume capacity in each scenario: 
$$\sum_{s \in \mathcal{S}_a, u \in \mathcal{U}} u Y_{su}(w) \geq \sum_{k \in \mathcal{K}} v_k(w) F_{ka}(w), \quad \forall \alpha \in \mathcal{A}^M, w \in \mathcal{W}$$
To ensure freight flow halance and delivery timelines in each scenario:

To ensure freight flow balance and delivery timelines in each scenario:

$$\sum_{a \in \delta^{-}(n)} F_{ka}(w) - \sum_{a \in \delta^{+}(n)} F_{ka}(w) = \begin{cases} Z_{k}(w) - 1, & \text{if } n = (o_{k}, t_{k}^{e}) \\ 1 - Z_{k}(w), & \text{if } n = (o_{k}, t_{k}^{e}), \\ 0, & \text{o.w.} \end{cases} \quad \forall k \in \mathcal{K}, a \in \mathcal{A}$$

To define variable domains:

$$X_s, Y_{su}(w) \in \mathbb{Z}^+, F_{ka}(w) \in \mathbb{R}^+, \quad \forall s \in \mathcal{S}, u \in \mathcal{U}, k \in \mathcal{K}, a \in \mathcal{A}$$

### Two-Stage Programming Formulation for HS

Objective function

$$\min \sum_{s \in \mathcal{S}} c_s^f X_s + E_{w \in \mathcal{W}} \Big[ \sum_{s \in \mathcal{S}, u \in \mathcal{U}} c_{su}^v Y_{su}(w) + \sum_{k \in \mathcal{K}} c_k^o Z_k(w) \Big]$$

$$\text{Total trucker contract fees} \qquad \text{Total hauler rental cost} \qquad \text{Total commodity outsourcing cost}$$

$$\text{in scenario w} \qquad \text{in scenario w}$$

#### Constraints

To guarantee contracted truckers not exceeding service capacity:

$$X_s \leq q_s$$
,  $\forall s \in S$ 

• To rent haulers for holding commodities in each scenario:

$$\sum_{u \in \mathcal{U}} u Y_{ku}(w) \ge v_k (1 - Z_k(w)), \quad \forall s \in \mathcal{S}, w \in \mathcal{W}$$

To have enough truckers for carrying haulers in each scenario:

$$\sum_{s \in \mathcal{S}_a} X_s \ge \sum_{k \in \mathcal{K}} F_{ka}(w), \quad \forall a \in \mathcal{A}^M, w \in \mathcal{W}$$

To ensure hauler flow balance and delivery timelines in each scenario:

$$\sum_{a \in \delta^{-}(n)} F_{ka}(w) - \sum_{a \in \delta^{+}(n)} F_{ka}(w) = \begin{cases} -\sum_{u \in \mathcal{U}} Y_{ku}(w), & \text{if } n = (o_k, t_k^e) \\ \sum_{u \in \mathcal{U}} Y_{ku}(w), & \text{if } n = (o_k, t_k^e), \\ 0, & \text{o.w.} \end{cases} \forall k \in \mathcal{K}, a \in \mathcal{A}$$

To define variable domains:

$$X_s, Y_{su}(w) \in \mathbb{Z}^+, F_{ka}(w) \in \mathbb{R}^+, \quad \forall s \in \mathcal{S}, u \in \mathcal{U}, k \in \mathcal{K}, a \in \mathcal{A}$$

### Model variants with different consistency requirements

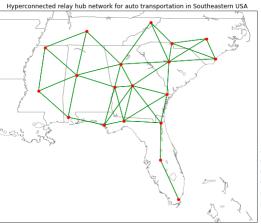
• Assume the planning horizon  $\mathcal{T}$  includes  $\mathcal{C}$  cycles and each cycle has  $\mathcal{L}^c$  time instants, where c-th cycle  $\mathcal{T}_c = \{c * \mathcal{L}^C, ..., c * \mathcal{L}^C + (\mathcal{L}^C - 1)\}$ . The platform may want to have consistent services across cycles.

Strong version of consistency constraint:

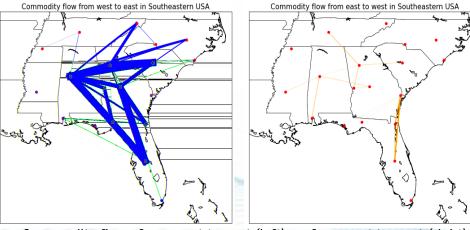
 $X_s = X_{s'}$ , if service s and service s' have the identical route path and cycle time but just in different cycles

Soft version of consistency constraint:

Add penalty of schedule inconsistency, measured by sum of service contract numbers across cycles, into objective function


### Experiment setups




•

•

•



Hyperconnected relay hub network



Commodity flows from west to east (left) vs. from east to west (right)

| Hourly driver contract fee (\$)            | 29   | Hourly size-8 hauler rental fee (\$) | 10  |
|--------------------------------------------|------|--------------------------------------|-----|
| Hourly tractor rental fee (\$)             | 18   | Hourly size-4 hauler rental fee (\$) | 5   |
| Outsourcing cost per vehicle per mile (\$) | 0.93 | Average mile per hour                | 50  |
| Contracted trucker capacity per service    | 10   | Consistency cost discount factor     | 0.8 |

Key experimental parameters

### Experiment setups

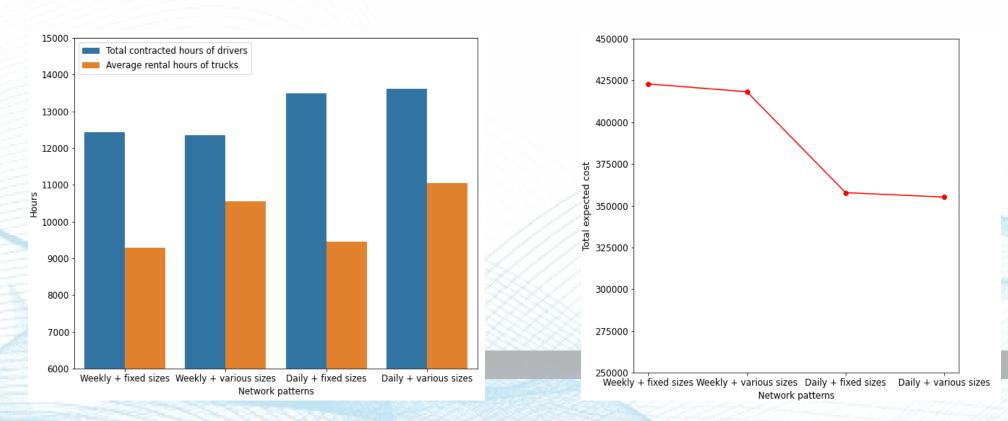
- Planning horizon: one week
  - Time discretization unit: six hours
- Services: all potential short-haul services adhering to USA federal hour-of-service regulations
  - Maximal driving time duration as 11 hours
  - Maximal on-duty time duration as 14 hours
- Experimental designs:
  - Deterministic design in stochastic demands vs. stochastic design in stochastic demands
  - Stochastic model with three different operational patterns FLU MCP, FLU SCP, and HS respectively
  - Stochastic model with different consistency requirements and hauling capacities

# Experimental results: deterministic design vs. stochastic design

| KPIs \ Model                            | Deterministic<br>design | Stochastic<br>design |
|-----------------------------------------|-------------------------|----------------------|
| Total contracted hours of drivers (hrs) | 9,408                   | 12,444               |
| Average rental hours of tractors (hrs)  | 8,023                   | 9,285                |
| Average rental hours of haulers (hrs)   | 8,023                   | 9,285                |
| Average outsourcing rate of commodities | 10.3%                   | 0%                   |
| Total expected transportation cost (\$) | 556,494                 | 422,985              |

• The Value of Stochastic Solution (VSS) = 556,464 – 422,985 = 133,509 in dollars, which means stochastic design can save about 24% of the total expected transportation cost

### Experimental results: three different operational patterns


| KPIs \ Operational patterns             | FLU-MCP | FLU-SCP | HS      |
|-----------------------------------------|---------|---------|---------|
| Total contracted hours of drivers (hrs) | 12,444  | 12,864  | 12,528  |
| Average rental hours of tractors (hrs)  | 9,285   | 9,312   | 12,528  |
| Average rental hours of haulers (hrs)   | 9,285   | 9,312   | 955.2   |
| Average outsourcing rate of commodities | 0%      | 0%      | 1.3%    |
| Total expected transportation cost (\$) | 422,985 | 431,880 | 492,742 |

- FLU-MCP achieves better consolidation through crossdocking than FLU-SCP
- HS offers enhanced freight protection and saves operational efforts by maintaining the goods inside the haulers at a higher total expected transportation cost

# Experimental results: consistency requirements and hauling capacities

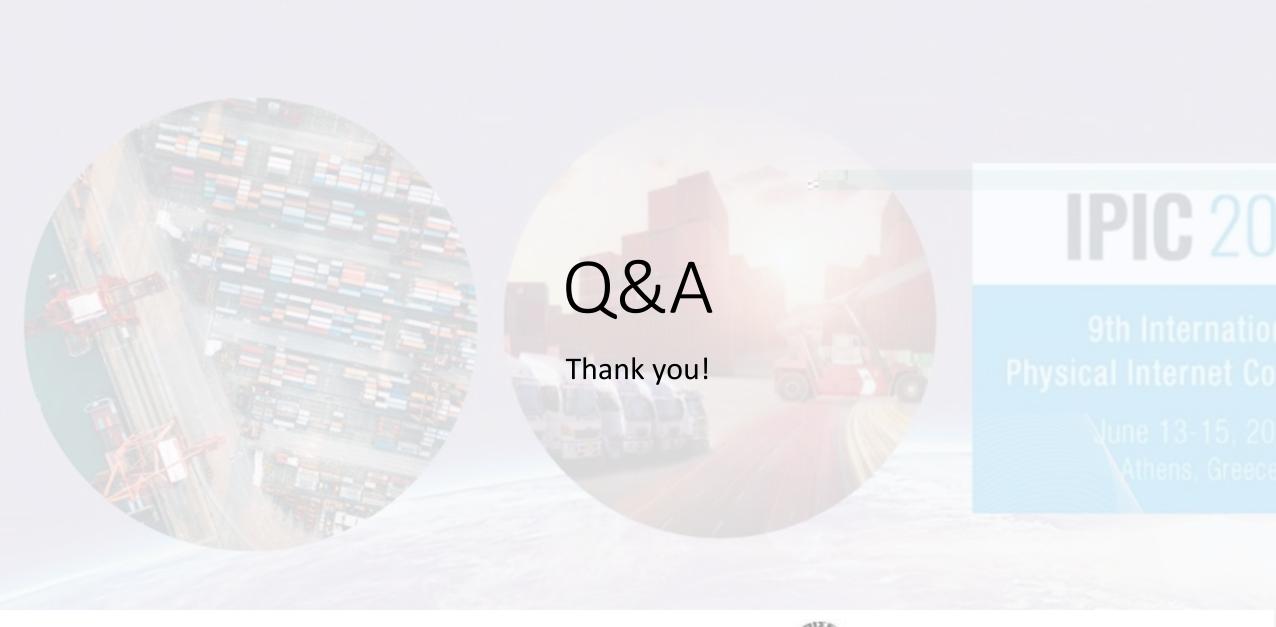
| Consistent patterns                     | Weekly  |         | Daily   |         |
|-----------------------------------------|---------|---------|---------|---------|
| KPIs \ Hauling capacity                 | Fixed   | Various | Fixed   | Various |
| Total contracted hours of drivers (hrs) | 12,444  | 12,348  | 13,500  | 13,620  |
| Average rental hours of tractors (hrs)  | 9,286   | 10,562  | 9,456   | 11,045  |
| Average rental hours of haulers (hrs)   | 9,286   | 10,562  | 9,456   | 110,45  |
| Average outsourcing rate of commodities | 0%      | 0%      | 0%      | 0%      |
| Total expected transportation cost (\$) | 422,985 | 418,253 | 357,840 | 355,152 |

# Experimental results: consistent requirements and hauling capacities



Compared with consistent requirements, various hauling capacities have more impact on contracted hours
of drivers and rental hours of tractor-hauler pairs, yet less on savings of total expected transportation cost

### Contributions


- Applying hyperconnected relay transportation as a sustainable solution to truck driver shortage issues through a logistics platform as a novel business context
- Providing a two-stage stochastic model for hyperconnected service network design of the platform.
- Exploring the impacts of demand uncertainty, operational patterns, consistent schedules, and various hauling capacities on the service network design through an automotive delivery test case in Southeastern USA

### Future works

- To develop more advanced computation methods such as bender decomposition or sample average approximation for larger scale instances
- To perform sensitivity analysis upon experimental parameters such as delivery time window and maximal driving time window
- To model more route patterns for both short-haul and long-haul, contracted services tailored to trucker preferences, and on-market carrier capacity
- To refine the approximate service schedules accounting for traffic time stochasticity







