

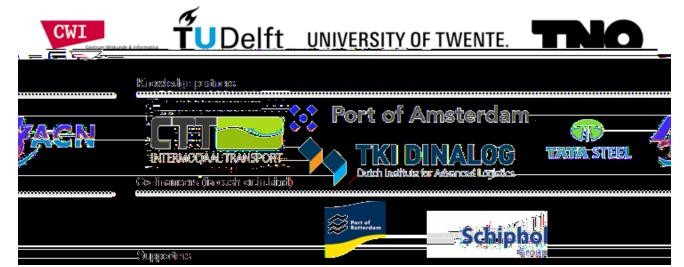
Frank Phillipson PDEng PhD



TNO - APPLIED SCIENCES

'Organisation for Applied Scientific Research in the Netherlands':

- Founded by law in 1932.
- To enable business and government to apply knowledge.
- Independent: not part of any government, university or company.


COMPLEXITY METHODS FOR PREDICTIVE SYNCHROMODALITY

Goal:

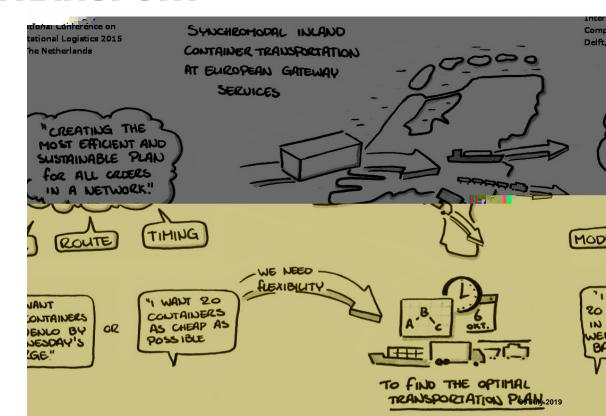
Enable a streamlined logistic system with improved transport efficiency, higher loading rate of vehicles, less emissions and costs, making use of complex synchromodal network optimization.

Funded by: NWO, TKI DINALOG, TNO, CTT

Partners:

WHAT DID WE PROMISE?

- A prototype of a synchromodal planning system
 - well documented and supported by several (scientific) papers.
- Evaluated on real cases that have different freight characteristics like:
 - Bulk and container transport.
 - Net centric versus freight centric.
 - High and low level of uncertainty.


Predictive Synchromodality: incorporating models, methods and tools based on predictive data analysis and stochastic decision making in (distributed) control environments.

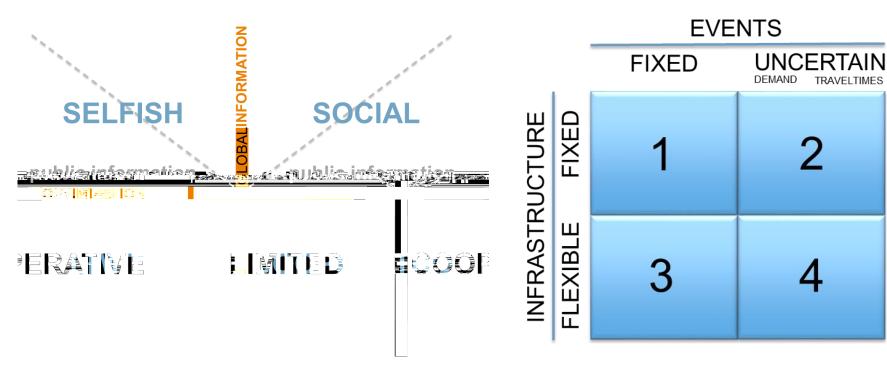
SYNCHROMODAL TRANSPORT

From inter-modal to synchro-modal means:

- Clients will only tell the logistics service provider when and where their cargo needs to arrive, entrusting the logistics service provider to determine how it gets there;
- Planners will use data that is (more) real-time, and routes will become subject to change in real time when beneficial.

SYNCHROMODAL PLANNING

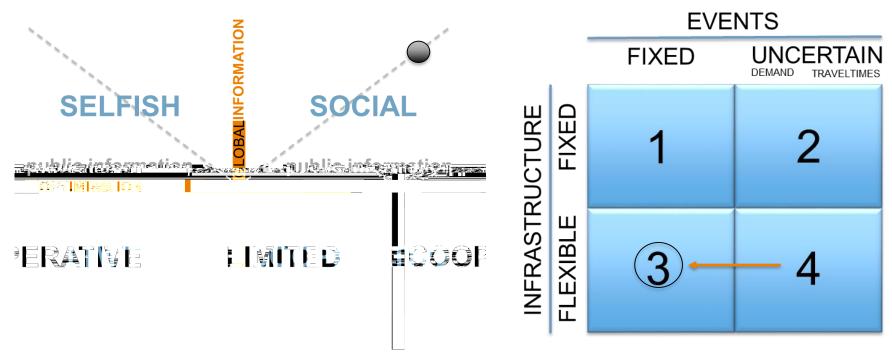
- Planning is based on data that is (more) real-time, and routes will become subject to change in real time when beneficial.
- This could mean:
 - A lot of re-planning need for fast planning methods
 - Robust planning
 - Stochastic;
 - Worst case / robust optimization;
 - Define robustness and use as objective;
 - Decentralised planning / Distributed control
 - Self-organisation
 - Use of predictions / predictive data analysis


THE ROAD TO PREDICTIVE SYNCHROMODALITY

TRAVELTIMES

THOUGHT-FRAMEWORK

THREE PAPERS FROM COMET-PS ACCEPTED


- Reduction of Variables for Solving Logistic Flow Problems.
 K. Kalicharan, F. Phillipson, A. Sangers, M. De Juncker
- Decision making in a Dynamic Transportation Network: a Multi-Objective Approach

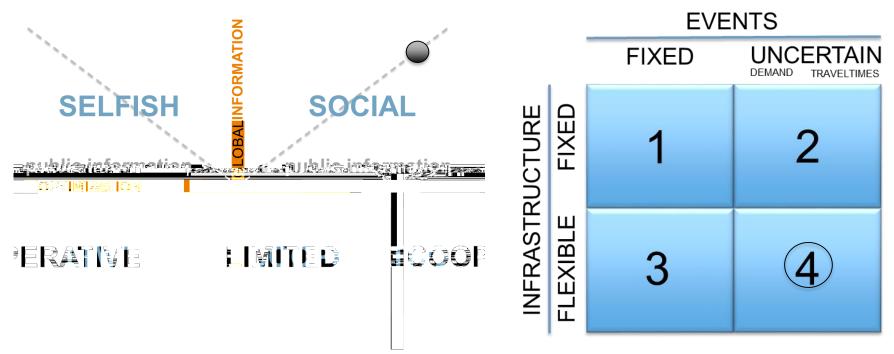
M.R. Ortega del Vecchyo, F. Phillipson and A. Sangers

User Equilibrium in a Transportation Space-Time Network L.A.M. Bruijns, F. Phillipson and A. Sangers

PAPER 1: REDUCTION OF VARIABLES FOR SOLVING LOGISTIC FLOW PROBLEMS.

1 IMPROVED EFFICIENCY OF SOLUTIONS FOR DETERMINISTIC PLANNING PROBLEMS

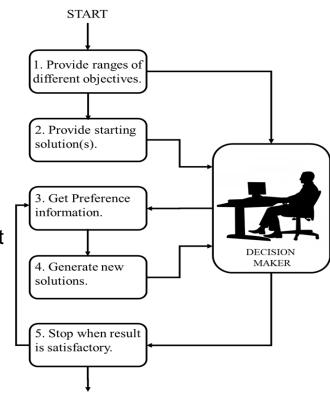
- Neduction of Variables for Solving Logistic Flow Problems.
 K. Kalicharan, F. Phillipson, A. Sangers, M. De Juncker
- Min-cost multi-commodity flow problem on a space-time networstŢf(pac)-h1/LanW*/LanILP 場底製alic4BTe8CBp€D每EH €D每€WR D●u報iD●t82位数W# UF


VARIABLE REDUCTIONS

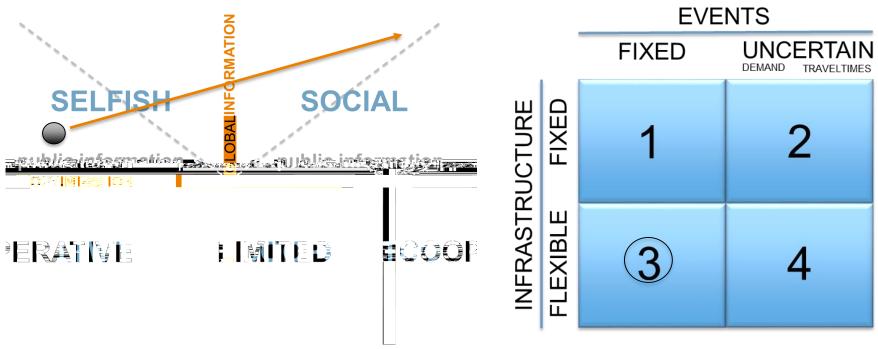
	Dadustian Antis	Danam.	القد المدالة المعاد	CarryTime	C_1.+!
Commodity reductions:	7.12 s	2600 (opt.)	Λ	No	K: 05
•	5.86s	2600 (opt.)	A	Yes	$K=25 \rightarrow 20$
Same sink/source reduction (A)	67.45 <i>s</i>	3760 (opt.)	A	No	<i>K</i> : 50
Disjoint time from a backings reduction (D)	61.16s	3760 (opt.)	A	Yes	$K=50 \rightarrow 39$
Disjoint time frame bookings reduction (B)	61.16s	3760 (opt.)	В	No	
Same vehicle type reduction (C)	43.35s	3'/60 (opt.)	13	Yes	
Same vehicle type reduction (C)	1667.61 <i>s</i>	3760 (opt.)	C	No	W : 6
Arc reductions:	628.58 s	3760 (opt.)	C	Yes	W =5
AIC IGUUCIIOIIS.	183.51s	3760 (opt.)	C	Yes	W =4
Source/sink location reduction (D)	61.16s	3760 (opt.)	C	Yes	W =3
Course, sink location reduction (D)	117.61s	3760 (opt.)	D	No	
Obsolete mode link reduction (E)	g 61.16s	3760 (opt.)	D	Yes	Sink Incomin
	64.58s	3760 (opt.)	D	Yes	Sink In/Out
Location reductions:	58.50s	3760 (opt.)	D	Yes	Complete
	129.98s	3760 (opt.)	F	No	
Minimal path reduction (F)	61.16s	3760 (opt.)	F	Yes	
	> 300.00s	-	G	No	
Direct connection reduction (G)	61.16s	3760 (opt.)	G	Yes	

12 | COMET-PS PROJECT

PAPER 2: DECISION MAKING IN A DYNAMIC TRANSPORTATION NETWORK: A MULTI-OBJECTIVE APPROACH


MULTI-OBJECTIVE OPTIMIZATION OF MCMCF

- Decision making in a Dynamic Transportation Network: a Multi-Objective Approach M.R. Ortega del Vecchyo, F. Phillipson and A. Sangers
- (mathematical) Definition of alternative objectives (within the MinCostMCF-framework):
 - Nobustness: the capacity of a plan to overcome delays in travel times and handling times on terminals and still be carried on as planned.
 - Flexibility: the capacity of a plan to adapt to delays in travel times and handling times on terminals when these force the plan not to be able to be carried on anymore.
 - Customer satisfaction
- (1) Cost: $\sum_{k} \sum_{P \in P(k)} C(P) X(P)$ (and trucks $\sum_{k} \sum_{P \in T \subseteq P(k)} X(P)$)
- (2) Linear anti-flexibility: simple $\sum_{P} \iota_{G}(P) x_{P}$ (or relative $\sum_{P} \iota_{G \setminus F}(P) x_{P}$)
- (3) Mean robustness: $\frac{-\lambda}{|\{e \in Pr\}|} \sum_{e \in Pr} \frac{F_e}{t_e^2 t_1^e}$ Where $\lambda = .01$
- (4) Customer satisfaction: $(\sum_{-2} s(\varrho, t) w(\varrho))^2$


MULTI-OBJECTIVE OPTIMIZATION OF MCMCF

- Generating Pareto optimal solutions:
 - An allocation is *not* Pareto optimal if there is an alternative allocation where improvements can be made to at least one participant's well-being without reducing any other participant's well-being.
 - The Pareto frontier is the set of choices that are Pareto efficient. By restricting attention to the set of choices that are Pareto-efficient, a designer can make trade-offs within this set, rather than considering the full range of every parameter.

PAPER 3: USER EQUILIBRIUM IN A TRANSPORTATION SPACE-TIME NETWORK

3 FAIRLY DISTRIBUTE COSTS OF CONTAINER TRANSPORT OVER ORDERS

- User Equilibrium in a Transportation Space-Time Network L.A.M. Bruijns, F. Phillipson and A. Sangers
- Min-cost multi-commodity flow problem on a space-time network with an LSP that controls the container flows
 - Global (system) optimization and satisfy the customers simultaneously
 - Add tolls to orders and paths

Looking at solutions that are System Optimal, and User Equilibrium in its tolled version.

17 | COMET-PS PROJECT

3 FAIRLY DISTRIBUTE COSTS OF CONTAINER TRANSPORT OVER ORDERS

- Create System Optimal (SO) problem-formulation.
- Solve SO-problem → flow (f).
- Create (Non-linear) problem to find minimal path tolls (NP-β).
- Solve NP-β–problem → path tolls
- Add path tolls to SO-problem SO-β; now optimum of SO-problem = UE in that network.

Not really an approach to use in a Selfish environment but rather a way to distribute the 'cost of the social optimal solution' fairly.

SUMMARY - CONCLUSIONS

- Complexity Methods for Predictive Synchromodality: incorporating models, methods and tools based on predictive data analysis and stochastic decision making in (distributed) control environments.
- Planning is based on data that is (more) real-time, and routes will become subject to change in real time when beneficial.
- TNO works on:
 - Fast (re-) planning methods
 - Robust planning
 - Analysis of Selfish-models

THANK YOU FOR YOUR ATTENTION

CONTACT: FRANK.PHILLIPSON@TNO.NL

Take a look: TNO.NL/EN/TNO-INSIGHTS

innovation for life