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Executive Summary  
As part of the research project of optimization in Physical Internet, IBM has incorporated the feedback 
provided by the project officer and partners into this final deliverable. We have identified several key 
areas that can support the work done in ICONET’s Living Labs and other deliverables. This deliverable 
serves as an additional set of evaluations and validations of different Machine learning techniques, and 
demonstrates the following: 
 

• Analysis of data from Living Labs. 
• Application of different approaches to a number of Use Cases in the Living Labs. 
• that the proposed solutions use the most up-to-date and modern technologies and approaches. 
• that Machine Learning techniques are employed where possible. 
• The provided data can be used to optimize the Supply Chain operations. 

 
After the mid-term review of the project, there were new initiatives by industry partners within the 
ICONET project to collect the relevant datasets for the creation of machine learning models capable of 
providing novel insights for the optimization of operations in the supply chain. IBM has used these 
unique datasets to predict the evolution of product consumption as it relates to both Living Lab 3 – Sonae 
and Living Lab 4 - Stockbooking. Section 5 of this deliverable discusses the application of the proposed 
prediction models in more detail. Key objectives of our work are outlined below: 
 

i) Helping the decentralization of order fulfilment in the ecommerce domain (LL3) 
ii) Stock out prediction to increase order fulfilment efficiency (LL3) 
iii) Providing relevant planning of warehouse space utilization (LL4) 
iv) Increase warehouse Quality of Service by optimizing picking time of orders (LL4) 
v) Inform the Routing Service to maximise centralised route and capacity planning (LL3/LL4) 

 
In addition to the key objectives outlined above for LL3 and LL4, for LL1 which is focused in the area 
of loading and composition, IBM have improved upon the two-dimensional (2D) Bin Packing 
implementation which is discussed in the previous versions of this deliverable, D2.12 & D2.13. Section 
2 of this deliverable presents a three-dimensional (3D) Bin Packing solution which will ensure all 
possible bundling scenarios are handled within the logistics supply chain.  
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1 Introduction 
 
In this final deliverable, IBM presents a series of machine learning models, trained and validated, for the 
prediction of product stocks in warehouses and stores.  Also, a further improvement of the Bin Packing 
algorithm implementation used for the optimization of operations within port yards is outlined. 
 
A well-known goal of the Physical Internet is to create a network of shared resources and information 
along the entire supply chain (Fazili, 2017).  This facilitates the creation of more intelligent and cognitive 
software solutions, capable of automatically leveraging data collected along the logistics chain, and also 
provides insights about the future evolution of the demand of network usage (Zhong, 2017).   
 A key focus of this deliverable is order fulfilment in e-commerce scenarios.  Following several meetings 
with Living Lab partners, that operate in the field of logistics, it became evident that historical data 
regarding the movement of products, can be used to predict the distribution of goods in their stores. 
 
The models presented in section 5 of this deliverable, which have been trained using Living Lab data, 
can lead to a de-centralisation of their activities, resulting in increased time savings and a better usage of 
available resources. An additional benefit, in relation to the fulfilment of food orders, is the reduction in 
overall food wastage which is one of the drivers of high cost, both economically and socially (Göbel, 
2015).  
The datasets provided by Sonae and Stockbooking represent a unique and significant amount of data for 
research. Access to these datasets have allowed for the application of the most up to date machine and 
deep learning techniques. Models like Long Short-Term Memory neural network have shown accuracy 
in prediction and flexibility towards the statistical properties of the dataset. 
 
In the previous versions of this deliverable, D2.12 and D2.13, IBM focused on the optimization of PI-
Movers’ usage in PI-Hubs, a series of possible approaches were presented, some of which leveraged 
other services such as the Routing Service (D2.5 PI networking, routing, shipping and encapsulation 
layer algorithms and services). Subsequently IBM focused more on the implementation of the 2D Bin 
Packing algorithm into the PI Service stack.  In this deliverable, together with the work done for the 
prediction models, the 2D Bin Packing implementation has been improved upon to produce a 3D Bin 
Packing solution which considers additional constraints effective across all bundling scenarios present 
in the logistics supply chain, this is discussed in more detail in section 2 of this deliverable.  
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1.1 Summary of previous versions 
 
In deliverable D2.13 IBM identified several key focus areas: 
 

• Acquire data from Living Labs 
• Expand the number of potential Living Lab Use Cases that Optimization is applicable to 
• Introduce Machine Learning 
• Perform initial evaluations of machine learning models on the different datasets 

 
After eventually acquiring datasets suitable for machine learning, IBM consulted with partners in Living 
Labs 1, 3 and 4 to identify existing use cases where optimisation (and specifically Machine Learning 
powered optimisation) could be applied.  Living Lab 4, in particular, showed early promise with regards 
to utilizing machine learning and also the quality of the dataset provided. 
 
Per the data available for machine learning, IBM outlined a strategy - the ensemble approach. This 
approach sees the use of multiple models trained from diverse datasets. The weaknesses or inaccuracies 
in a single model will be overcome by the strengths in another, and vice versa. By combining multiple 
models with a diverse set of strengths and weaknesses the overall results have a greater chance of 
accuracy and success.  
 
The datasets were successfully used to evaluate machine learning algorithms that optimize warehouse 
and port operations by reducing the distance travelled by picking operations. A number of ML algorithms 
were evaluated, and it was shown how Self Organised Maps for Clustering is considered the best match 
for the use cases in the Living Labs.  
 
For Living Lab 1 (Port of Antwerp), the Bin Packing algorithm was researched, as this technology is 
widely adopted in the logistics industry. Further research in this area was performed and a multi-
dimensional Bin Packing implementation, enhanced by reinforcement learning techniques, was 
introduced. This allows algorithms to learn from past failures and successes without the need for pre-
training or pre-processed datasets.  
 
D2.13 also showed how reinforcement learning and neural networks can be applied in the Port of 
Antwerp shunting yard. To increase efficiency and clustering techniques they can be applied in the 
container storage yards to reduce picking operational costs.  
 
While initial machine learning models and training performed in D2.13 showed promise, a more detailed 
and expansive exploration has taken place in this deliverable, D2.14. 
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2 Heuristics - PI-Node Optimization 
 
An overarching goal of the Physical Internet is the eventual competitive collaboration between transport 
and logistics actors to realise more efficient supply chain operations across several transport mediums 
(Montreuil, 2011). As professor Franklin mentioned during his keynote speech at the ICONET project 
kick-off, the journey to realise the Physical Internet concept will necessitate the gradual adoption of new 
services, standards, protocols and concepts. One of the logical starting points to begin this journey is the 
Optimisation of the PI-Nodes within the PI-Networks.    
 
In the framework of Physical Internet, the movements of goods in a PI-Node is made possible by specific 
units (PI-Containers) moved by specific transporters (PI-Movers), in order to ensure timely delivery of 
goods and to the correct destination. To achieve this, a solution is required that leverages all possible PI-
Movers for all PI-Containers that have to be transported.   
This scenario is very close to the Bin Packing problem, which for decades, computer scientists of all 
generations have tried to resolve. Due to the challenges of obtaining optimal solutions of Bin Packing 
problems, data scientists have proposed various approximations or heuristic algorithms. To achieve 
satisfactory results, heuristic algorithms have to be designed specifically for different types of problems 
or use cases: in particular this is true for Bin Packing of three-dimensional PI-Containers.  
 
In the previous version of this deliverable, D2.13, IBM implemented a solution using the bidimensional 
Bin Packing algorithm which allows for the assignment of PI-Containers to PI-Movers using  
two constraints, the width and length of the PI-Containers. The height of the PI-Container was not 
considered because the solution was developed in the context of LL1, where PI-Containers are containers 
loaded on Wagons using only the width and length constraints, the height constraint is not part of the 
optimisation strategy employed. However, the ultimate intention of the Optimization Service is to 
provide a generic solution that can be applied at scale and across all possible regulatory scenarios in the 
context of the logistics supply chain network. For this reason, IBM have implemented a solution that 
considers all three-dimensions of a PI-Containers. 
 
The complexity of finding optimal solutions for the three-dimensional Bin Packing problem is 
compounded by the difficulty of providing a useful problem formulation. In order to formulate the 
problem, each PI-Container i in the finite set S to have three dimensions; wi, hi and di. Each identical PI-
Mover b has dimensions W, H and D. The PI-Containers and PI-Movers are rectangular boxes and the 
three dimensions correspond to the width, height, and depth (length) values. PI-Containers are allowed 
to rotate orthogonally. Rotating a PI-Container simply means swapping its width (wi), height (hi) and 
depth (di) values around in a defined and ordered manner. Each PI-Container has 6 rectangular facets, 
but there are only 3 distinct facets because the opposite facets are identical. Each of the three facets can 
be rotated orthogonally to obtain a new configuration of the box.  Each PI-Container can therefore have 
6 different rotation configurations.  
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2.1 Problem definition  
 
To find the solution for a PI-Mover b, assume without loss of generality that: 

!		𝑤! 	
"

!#$

£		𝑊!

!		ℎ! 	
"

!#$

£		𝐻!

!		𝑑! 	
"

!#$

£		𝐷!

As such, it is correct to conclude the following:  

!		𝑤! 	ℎ! 	𝑑! 	
"

!#$

£		𝑊𝐻𝐷	!

Therefore, for each PI-Mover, intend to minimize the wasted volume given, by using the following: 

𝑊𝐻𝐷 −!		𝑤! 	ℎ! 	𝑑! 	
"

!#$

	!

 
As indicated in previous versions of this deliverable, Bin Packing being a NP-Hard problem suggests 
that an exhaustive search for the optimal solution is, in general, computationally intractable, and also that 
there is thus no known computationally feasible optimal solution method for the problem.  Other means 
to obtain a solution therefore need to be found. Most popular are heuristic solution methods.   
 
2.2 Solution Methodology 
In order to solve the problem definition outlined in section 2.1 above, IBM have leveraged and built upon 
a solution proposed by (Dube, 2006). An additional combined weight constraint of both PI-Containers 
and Wagons has been implemented to ensure LL1 objectives are met, which is to optimise the formation 
of wagons to trains.  
 
The presented 3D Bin Packing implementation uses a heuristic approach to perform the core task of the 
Bin Packing problem and satisfies the following objectives: 
 

i) Guarantees a solution to the problem 
ii) Obtains a solution in a reasonable time (i.e. solution is computationally feasible to obtain)  
iii) Allows for general data input  
iv) Provides continuity between the solution and the problem  
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The objectives listed above provide a solid reasoning as to why a heuristic approach is appropriate. Any 
approach which fails to satisfy any of the above objectives will not completely meet user requirements 
and thus cannot be considered an optimal solution.  
 
Failure to satisfy (i) and (ii) above would be unsatisfactory and if the solution does not satisfy (iii) then 
it would lose its generality and flexibility. Condition (iii) is also of importance because bins (or 
containers) need to be packed with items (or cargo) of different dimensions. Failure to satisfy (iv) would 
also make it difficult for users to retrieve data and test alternative solutions during the process of problem 
solving. Thus, failure to satisfy (iv) would mean that the system does not readily support continuity 
between the solution and the problem.  
The two primary heuristic Bin Packing algorithms that were used in the presented solution were the First 
Fit Decreasing and the Best Fit (see Annex I – Pseudocode). They were chosen over other heuristic 
algorithms because they have a faster running time, and also produce solutions that are much closer to 
the optimal solution than most other heuristic algorithms.  More details about the usage of the presented 
approach in real cases (Living Lab 1) can be found in section 6 of this deliverable – PI Web Services. 
 
2.2.1 3D Best Fit Algorithm  

The purpose of this algorithm is to optimise the volume used in a bin. First, a packing direction is decided. 
Each PI-Mover has three directions in which to pack: a width (or x) direction, a height (or y) direction, a 
depth (or z) direction. One PI-Mover is packed at a time. First, a pivot point is chosen. The pivot is a (x, 
y, z) coordinate which represents a point in a particular 3D bin at which an attempt to pack a PI-Container 
will be made.  
 
The back lower left corner of the PI-Container will be placed at the pivot. If the PI-Container cannot be 
packed at the pivot position, then it is rotated until it can be packed at the pivot point or until we have 
tried all 6 possible rotation types. If after rotating it, the PI-Container still cannot be packed at the pivot 
point, then we move on to packing another PI-Container and add the unpacked PI-Container to a list of 
PI-Containers that will be packed after an attempt to pack the remaining PI-Containers is made. The first 
pivot in an empty PI-Mover is always (0,0,0). 
 

2.2.2 3D First Fit Decreasing Algorithm  

To pack a PI-Container, firstly a packing direction needs to be decided. The longest side of the PI-Mover 
corresponds to the packing direction. Then rotate each PI-Container such that the longest side of this PI-
Container is the side which is the packing direction, i.e. if we are packing by width, then we want the 
longest side of the PI-Container to be the container’s width, so for example if the packing direction is by 
width and the current height of the container is longer than its width, then rotate the container. If after 
performing the rotation(s) the item cannot fit into the PI-Mover (i.e. one or more of the dimensions of 
the containers exceeds the mover’s corresponding dimension), then we rotate the container until the 
second longest side of this container is the side which corresponds to the packing direction. If after 
performing the rotation(s) the container cannot fit into the mover, then we rotate the container until the 
third longest side of this container is the side which corresponds to the packing direction. Next sort the 
containers in decreasing order of width, height or depth depending on packing direction. The pseudocode 
for this can be seen in Annex I.  
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3 Learning based PI-Optimization 
 
3.1 Time-Series Forecasting 
IBM investigated the possibility of using historical data of activities within a PI-Node, so as to improve 
the efficiency of the operations in it. Considering the PI concepts presented in D1.8 – Generic PI Case 
Study & Associated PI-Hubs plan v2, a PI-Node continuously receives PI-Containers and manipulates 
them in order to send them to the final destination. In the scenarios defined in D1.8, a PI-Node only sees 
the demand of the nodes in the neighbourhood or local network; it has limited visibility of the demand 
of the terminal users, so it can use the flow of containers through the node to derive the information 
around the demand of the final user. This information can be used to a) forecast future demands of 
consumer goods and b) to cluster PI-Containers on arrival to ensure correct and optimal storage. In this 
deliverable, IBM introduce the concept of time series forecasting and also the usage of a neural network 
in order to make relevant predictions regarding stored quantities.  
 
Timeseries forecasting is a well-known technique of econometrics and statistics: in recent years there 
was an increase of its application in several fields from Financial Markets (Ranco, 2016) to Urban Traffic 
(Guo, 2020), mostly due to a significant increase in the volume of data recorded. Timeseries forecasting 
provides a solid basis for planning the future evolution of systems subjected to respective studies.  For 
this reason, a tentative step to apply timeseries forecasting techniques to the PI context has to be made, 
given the temporal nature of data available within the ICONET Living Labs. 
 
The Routing Service is the first and most relevant application of time series forecasting in the PI context 
defined by ICONET. In deliverable D1.8, the Physical Internet concept defines a specific series of layers 
in the supply chain in an analogy to digital internet e.g. the OLI layer; of those layers routing is the one 
that can leverage insights about future distribution of goods. The routing layer, in fact, is the layer 
responsible for identifying the suggested route for each PI-Mover. Therefore, if a trained machine 
learning forecasting model is employed as part of the Optimisation Service and the gathered insights are 
published, the routing service will calculate the route and can take into account the most probable 
distribution of goods, resulting in an optimal outcome in terms of time and mover’s utilization.  The final 
result of sending the PI-Mover to the right PI-Node to collect a PI-Container is an important goal of the 
Physical Internet. 
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3.2 Background & State of The Art 

 
Figure 1 – Product Quantity in Storage 

 
Figure 1 above represents the usual shape of a time series for the product quantity in storage, in a given 
store, at the end of each day. This information is leveraged in order to predict the future evolution of this 
curve. This prediction may then be used by the Routing Service to determine which store to visit to fill 
an order. 
 
Per Figure 1, it is immediately evident that there are issues with some of the key features of time series 
forecasting in that, autocorrelation exists which violates the hypothesis under which standard 
econometric models can be applied and also a seasonal trend exists. As can also be seen, the mean value 
is changing over time. In order for a time series to be predictable, it should satisfy two conditions: 

1. Low level of correlation between the numerous data points 
2. The time series should be stationary 

 
While the first condition above simply implies that the correlation between the time series and its lagged 
version is close to zero, the second condition is more complicated.  Stationarity means that the time series 
should: 

1. have constant mean across time 
2. have constant standard deviation across time  
3. not have any source of trend in it 

 
If above conditions are met, the time series is stationary and can be forecasted. It is generally the case 
that these conditions are violated by real-world time series data such as the time series of daily stocks in 
a store.  Data scientists have developed several techniques to overcome this issue (Kwon, 2007)  (Halevy, 
2015).  Neural network models are able to make predictions without too much consideration in the 
stationarity of a time series. 
 
The idea of adding time series forecasting to the Physical Internet context can be fruitful for supply chain 
optimization. In fact, the paper (Kantasa-Ard, 2019) proposes an approach to reduce the complexity of a 
Hub’s connection by leveraging a predictive model of the demand. The approach is based on the concept 
of dynamic clustering for the retailers’ demand, solving retailers to PI-hubs’ clusters assignment problem, 
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and then tackling a routing problem for each cluster. The dynamic clustering is based on a forecasted 
demand calculated from a learning algorithm - Long Short-Term Memory (LSTM) Recurrent Neural 
Network.  Another paper (Qiao, 2019) investigates a dynamic pricing problem for less-than-truckload 
(LTL) carriers during several auction periods in Physical Internet (PI), in consideration of peak demand 
forecasting.  
 
3.2.1 Introduction to LSTM (Long Short-Term Memory) 

Neural networks, in particular LSTM recurrent neural networks, can represent a solution to several 
computational problems for time series forecasting, in particular in a real deployment in which it is 
impossible to make all the tests necessary to understand the statistical properties of the data. See Annex 
II - Overview of LSTM for a brief explanation of what LSTM models are and how they are used. 
 
3.3 Our Methodology 
Our approach was to use an LSTM model to predict the next value of the stored quantity given n 
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4 Application in LLs Perspective 
 
In order to improve the efficiency of the Routing Service, the predictive models proposed in this 
deliverable are used for predicting the future quantity of stocks of a given product in a store and enable 
intelligent storage of goods in a warehouse. Both machine learning models are applicable in LL3 and 
LL4 at the Routing Service layer, as the prediction of future distribution of goods would help the routing 
service to identify the best route for optimal allocation of PI-Movers. 
 
4.1 Living Lab 3 Goals 
 
Over the course of the project, Sonae (for its food e-commerce service) have identified the following 
Living Lab 3 goals: 

• Decentralize and optimize order initiation/preparation/fulfilment to inform the routing service 
• Shorten delivery times 
• Provide faster and more convenient shopping experience 

 
The potential role of machine learning in achieving these goals is to predict future Stock Keeping Unit 
(SKU) Levels & Stockouts. If the routing service can consume the result of the machine learning model, 
it will be possible to decentralize the fulfilment of the orders received by Sonae. Knowing in advance the 
distribution of the products between the stores can lead to better utilization of PI-Movers, making it 
possible to avoid moving stocks from stores, unless an order is to be fulfilled. It can also reduce delivery 
time because with good planning there will be no stockouts, as the PI-Movers will be able to avoid stores 
that do not contain insufficient stocks to fulfil the order. 
 
To enable training of the predictive model, Sonae has collected 56 days of storage records of around 
60,000 products in 4 stores located in the city of Porto, Portugal. 
 
4.2 Living Lab 3 Data 
 
The records were collected only during the business day. For this reason, we re-sampled the time series 
to be regular only during business hours, i.e. we discarded weekends. This has reduced the length of the 
timeseries to 42 days. Table 1. below shows the summary statistics for each store. The values shown are 
computed for each time series and then the mean of them was computed.  
  

DAY STOCK STOCK STOCK STOCK SKU  
count mean min max std COUNT 

STORE 
      

A 38.5948851 33.953754 0.68685199 56.5175478 12.9223681 48095 

B 38.4471396 50.8024221 0.71729754 88.4664147 20.1113731 55079 

C 38.7545982 40.4017437 0.63057038 64.389396 14.1121618 47954 

D 39.3461568 31.6502373 0.27462652 51.5378535 11.7727301 26462 
Table 1 - Sonae Data 
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4.3 Methods 
As already mentioned, we decided to use Long-Short Term Memory (LSTM) neural network and 
compared its accuracy with respect to an Auto Regressive Integrated Moving Average model (ARIMA). 
This decision was made because of the high level of autocorrelation of the time series.  It is possible that 
in the time period used to make the prediction that there is a violation of the stationarity condition as 
already outlined in section 3.2 above. As a result, making predictions with standard econometric model 
is not possible. Being stationary for a time series means in practice three things: 
 

1. The average of the time series value cannot change during the period of analysis. 
2. The standard deviation should not change during the period of analysis. 
3. There should not be trends or seasonal patterns. 

 
Autocorrelation between the various lags of the timeseries is a clear sign that the above conditions are 
not satisfied. In Figure 2 below, the presence of autocorrelation is evident until lag 5 for a given 
timeseries. After lag 10, the autocorrelation is increasing which can be a dangerous sign of seasonality. 
Given the nature of the data of residual products in the stores, it is not unexpected to see such seasonal 
fluctuations illustrated in Figure 2 below.  

 
Figure 2 - Autocorrelation 

Note: Lag 5 = 1 week / Lag 10 = 2 weeks and so on 

Due to time constraints, stationarity for each time series was not tested however, one possible way to 
overcome this potential risk is to use a model, like LSTM, that is able to avoid this kind of issue.   With 
a particular set of parameters even the ARIMA model can face the challenges of such types of time series 
however, due to time limitations, it is not possible to finetune an ARIMA model for each product. 
Understandably, creating a model for each product was almost impossible, given the number of products, 
but it is also not the best approach given that we will lose information provided due to the volume of 
data. 
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Therefore, a decision was made to train a model that will learn from each product’s history.  
Unfortunately, the products are not all the same i.e. there are products that always have a high volume in 
terms of quantity. In order to address this heterogeneity, we decided to renormalize the time series 
according to their minimum and maximum values. Figure 3 below is a distribution of the area of the 
curves between (sum of all the values of each time series) in each store in Porto city. 
 

 
Figure 3 - Heterogeneity in the sum of the values of the timeseries for the Porto dataset 

Figure 4 below provides an indicative idea of the distribution of the heterogenicity of the data because it 
shows a sum of the values for each product in the Living 3 dataset. It can be seen that some products are 
present in some stores and not in others and that more or less the distribution of the timeseries values is 
the same in all the stores; even if some stores seem to have more frequent residuals. These graphs enable 
us to understand that there are differences between products, and this heterogeneity needs to be 
considered.  

 
Figure 4 - Products per Store 
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To remove heterogeneity, and to overcome the issue of stationarity, a lag of 6 was used for our model. 
This decision was made after looking at the autocorrelation graph in Figure 2 above.  Having taken the 
value of the time series in the previous 6 days to make the prediction, we decided to renormalize the 
value of the timeseries by the minimum and the maximum using the following approach:   
 
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) 
X_scaled = X_std * (max - min) + min 
 
Note: where min, max = feature_range. 

This type of renormalization transforms features by scaling each feature to a given range. This estimator 
scales and translates each feature individually such that it is in the given range on the training set, e.g. 
between zero and one. After this renormalization was done, the model was trained as indicated in the 
following section 4.3.1. 

4.3.1 LSTM training 

As already mentioned, the neural network was trained and tested over each time series of a product. 
This process can be summarized as follows: 

1. Randomly select a product and a store 
2. Renormalize the time series 
3. Take 66% of its initial length for training (this number was chosen according to existing 

common practices for the implementation of LSTM models) 
4. Repeat the training process for 50 loops over the same time series (the number of loops was a 

compromise between the computational power of the GPU used and the number of time series 
to process) 

5. Test the result over each remaining day on the sequence  
6. Compute the mean square error for the time series 
7. Select a new time series and the process restarts. It is important to notice that the weights of the 

times series were not reset, so the model will keep the information about the timeseries j used 
for training. 

 
This process removed the necessity to keep a separate model for each product. Instead, one is kept that 
contains mean information about the entire dataset. Given the GPU capacity available, over 12,000 
products were used to train the model (20% of the entire dataset).  
 
4.3.2 ARIMA training 

Given the unique nature of the dataset provided by Living Lab 3, it was not possible to compare our 
results with the examples from the existing literature. So, in order to have an estimate of the usefulness 
of the trained model, a decision was made to also train an ARIMA model. Given the well consolidated 
understanding of this econometric model, it represents a baseline for our prediction.  
 
The training process of the ARIMA model was similar to the one described in section 4.3.1 above: 

1. Randomly select a time series 
2. Use 66% of its length for training and the rest for testing  
3. Train the model  
4. Compute the mean square errors of the predictions. 
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Given the nature of the ARIMA model, we have trained a single ARIMA for each time series.  There is 
no concatenation here because it is not possible to keep the weights of the trained model for future 
training.  
4.3.3 Comparison (LSTM & ARIMA models) 

The standard and correct approach of a comparison of two models in data mining is to train two models 
over the same dataset and measure their accuracy. But given the limitations in the Statsmodels python 
library used for training the ARIMA model, we decided to sample some time series and compare the 
mean square error of the  trained model of LSTM with each ARIMA model trained for each time series.  
 
The results presented in Figure 5 below show that the mean square error of ARIMA (5a) is higher than 
LSTM (5b). In fact, if one looked to the final bar of the two histograms you can see that there are more 
time series with an error greater than 20 in the ARIMA model (5a) than the one of LSTM (5b). This is 
confirmed by the values shown by the ratio between the two mean square errors of the time series where 
it can be seen that the number of times in which ARIMA (5a) is greater than LSTM (5b) is more than the 
contrary. We have done this comparison over around 150 time series of products.  The training of the 
ARIMA model is particularly slow and we could not perform the analysis over more products. In our 
interpretation, this indicates that concatenating the training of the time series increased the accuracy of 
the model in comparison to the more classical approach of ARIMA.  

  

Figure 5 – Mean Square Error 

(a) ARIMA Model: approx. 70 time series > 20 
(b) LSTM Model: Mean Quare Error: 60 times series > 20 

(c) Ratio between LSTM & ARIMA models: There are more than 100 time series with a value < 1, meaning LSTM is lower 
than ARIMA 

(a) (b) 

(c) 
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4.4 Living Lab 4 Goals 
 
Over the course of the project, Stockbooking identified the following as goals for Living Lab 4: 

a. Increase warehouse Quality of Service 
b. Improve the utilisation of the warehouse floor space  
 

To order to achieve these goals, LL4 provided a dataset containing 5 years of activities conducted in one 
of their warehouses in France. IBM believe that prediction models can help achieve the desired goals of 
LL4. Effective planning of goods in arrival and departure can lead to a better usage of the available space 
in the warehouse and ultimately improve the quality of the services. A prediction model similar to the 
model trained for Living Lab 3 can be used in this context to forecast the goods in arrival and prepare in 
advance the space for the products. With the pontential introduction of a type of mapping system that 
can leverage the insights of the proposed predictive models we think this will help achieve the Living 
Lab goal of improving the utilisation of space within a warehouse.  
 
Nowadays, it is possible to use methods of dimensionality reduction – such as self-organizing maps - in 
order to transform the representation of instances from several KPIs to specific bidimensional or three-
dimensional maps. The dataset provided by Stockbooking shows a lot of similarities with the data 
provided by Sonae. In both cases there are several time series of movements of products. Although the 
context is different, it can be assumed that the statistical properties of the data are the same. This is 
because in both cases the goods in arrival and departure are related to the final retailer demands. 
 
Therefore, a decision was made to apply the same type of machine learning algorithm, LSTM. We 
applied the addition of predicting not only the quantity in stocks but also the number of products leaving 
from and arriving into the warehouse and how many palettes would be involved.  As a result, we predict 
4 timeseries with a single model. Given its nature, the LSTM model will take into consideration any type 
of correlation between the 4 timeseries we are training to predict.  
 
The normalization and the process of evaluation are the same as in the Living Lab 3 case.  Following the 
approaches suggested in the previous version of this deliverable, we have also tried to apply self-
organizing maps to this dataset. We think as interesting area for future work would be an evaluation of 
the clustering efficiency of self-organising maps over the forecasted time series.  
 
Given that for this Living Lab we are going to predict a vector of 4 time series, we cannot compare the 
result of the prediction of LSTM with an ARIMA model. This is because ARIMA makes its forecasts 
only against a single value.  In Econometrics domain, exists a model called Vector Autoregressive model 
(VAR) for these types of situations, but it will require a specific analysis of the stationarity of the time 
series vector. Given the training time required, we propose this as a future step. Thus, under the 
assumption of similarity between the two datasets, we decided to train an LSTM model, following  
process created for LL3.  
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4.5 Living Lab 4 Data 
Stockbooking collected data of the movements of products in a warehouse from March 2015 to January 
2020. We were particularly interested in the quantities and products leaving the warehouse. Table 2. 
below provides the description of the dataset. 
 

 
Field Description 

maj Indicates the date of movement  

tmv Indicates the type of movement. There are 5 types: arrival(EE), departure(SS),  free  
space(LS), internal putting(DE), internal pushing(DS).  In some cases, there are no 
records so not applicable (NA) 

pbru Indicates the weight moved 

allee Length of the warehouse 

prof Depth of the warehouse 

niv Level of the warehouse 

ref Unique id of the products 

npalfm Unique id of a palette 

qte Number of units of a palette moved.  
Table 2 - Stockbooking Data Template 

Table 3. below presents a summary of the key statistical features of the dataset. The dataset represents a 
series of records of movement of various quantities of products between palettes and outside of the 
warehouse. We focused our attention only on the movements of goods leaving the warehouse because 
we were interested in identifying the patterns in the demand of goods. 
 

Field Min Max Mean Std. Dev Median Mode Unique Valid 

maj 2015-01-
06 

2020-04-01 -- -- 2017-08-28 2018-10-12 -- 719127
1 

tmv -- -- -- -- -- EE 6 719127
1 

pbru 0.000 1029.600 197.390 157.762 178.360 220.320 -- 719127
1 

allee 1.000 999.000 253.922 243.926 176.000 160.000 -- 719127
1 

prof 1.000 999.000 135.987 151.787 72.000 201.000 -- 719127
1 

niv 1.000 10101.000 8.773 22.758 3.000 1.000 -- 719127
1 

ref 140039.0
00 

43932990.
000 

12120466.
273 

2184508.0
43 

12263964.
000 

12310574.
000 

-- 719127
1 
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npalfm -- -- -- -- -- -- -- 719127
1 

qte 0.000 448.000 50.656 43.296 42.000 63.000 -- 719127
1 

Table 3 - Stockbooking Dataset Statistics 

 
Field Outlier

s 
Extrem
e 

Action Impute 
Missin
g 

% 
Comple
te 

Valid 
Record
s 

Null 
Value 

Empty 
String 

White 
Space 

Blank 
Value 

maj 0 0 None Never 99.999 719127
1 

58 0 0 0 

tmv -- -- -- Never 99.999 719127
1 

0 58 58 0 

pbru 133796 420 None Never 99.999 719127
1 

58 0 0 0 

allee 1 0 None Never 99.999 719127
1 

58 0 0 0 

prof 58059 3503 None Never 99.999 719127
1 

58 0 0 0 

niv 1284 29 None Never 99.999 719127
1 

58 0 0 0 

ref 99657 54090 None Never 99.999 719127
1 

58 0 0 0 

npalfm -- -- -- Never 99.999 719127
1 

0 58 58 0 

qte 89855 26708 None Never 99.999 719127
1 

58 0 0 0 

Table 4 - Data Quality 

Table 4. above shows the relative quality of the dataset. We processed this data for the purpose of having 
four timeseries; two for units and palettes in arrival and two for units and palette in departure. We 
therefore consider only 2 types of movements in respect of the 6 movement types shown in Table 5. 
above. This decision was made because we think that they are more closely related to the user demand. 
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4.6 Methods 
To train the model, we focus on the movement of products, both in and out of the warehouse. Despite 
the dataset having granularity of days, it was decided to resample it to a weekly basis. This was to avoid: 
i) missing values and ii) too many days of zero activity. It is worth remembering, however, that there is 
not always daily movement of goods in a warehouse. Based on what we have learnt from Living Lab 3, 
we make the same assumption that there is heterogeneity between products in the LL4 dataset and so we 
normalised the time series using the same technique used in LL3. We have chosen to use a lag of 4 for 
the model because this represents a month of activity for the warehouse. After this pre-processing, we 
trained the LSTM model using the same approach as the one defined for LL3.  
 
In this section, we present how we have used self-organising maps to cluster the products contained 
within the LL4 dataset. See Annex III - Overview of SOM (Self Organising Maps) for a brief explanation 
of what SOMs are and how they are used. 
 
 
4.6.1 SOM Training 

Training occurs in several steps and over many iterations: 
 

1. Each node's weights are initialized. 
2. A vector is chosen at random from the set of training data and presented to the lattice. 
3. Every node is examined to calculate which one's weights are most like the input vector. The 

winning node is commonly known as the Best Matching Unit (BMU). 
4. The radius of the neighbourhood of the BMU is now calculated. This is a value that starts large, 

typically set to the 'radius' of the lattice but diminishes each time-step. Any nodes found within 
this radius are deemed to be inside the BMU's neighbourhood. 

5. Each neighbouring node's (the nodes found in step 4) weights are adjusted to make them more 
like the input vector. The closer a node is to the BMU, the more its weights get altered. 

6. Repeat step 2 for N iterations. 
 
It was decided to leverage this technique to cluster the products in the warehouse and use the formed 
cluster to suggest the distribution of the products in the warehouse. For that, we created 3 different 
types of representations of the products available in LL4 which are listed below. 
 

1. One in which we have considered how many units of a given product are leaving the warehouse 
every day with respect to the total leaving on any given day. We are therefore considering every 
day as a single order and studying its composition. 

2. A representation of statistical properties of the time series (min, max, mean, median, length) 
3. A set of normalized weekly aggregated time series. 
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5 Results & Discussion 
 
5.1 Living Lab 3 
We have considered the last 6 business days of records for each product and in order to perform an 
evaluation of the trained model we have considered training over each timeseries and testing over the 
last final part of each timeseries. This means that we created instances of the form length of time series 
per 6 lags. 60% of the initial length of the timeseries was in included in the training set and the rest was 
used for testing. 
 
Figure 6 below shows the distribution of the mean squared error of the prediction in training and testing. 
It is evident that testing creates more errors of training than should be the case.  

 

Figure 6 - Mean Square Error Scatterplot for the distribution of prediction of each time series 

It is also evident however that, when viewed as an overall distribution, the model seems to be overfitted. 
In reality if we look at the scatter plot in Figure 6 we can see that, for the majority of the timeseries, the 
error is under 10 which makes it a good prediction. It is evident that we cannot impose a perfect prediction 
of the amount, due to the statistical nature of the prediction model. In absence of specific indication from 
the Living Lab, given the mean value of a time series overall and the better performance in respect of 
ARIMA we can be satisfied. It is also evident that for some timeseries there is a significant error both in 
training and testing as can be seen in Figure 7 below, but this can be improved in future work. 
Another argument that we think will need more attention is the metric of evaluation.  We have considered 
a simple mean average of the mean squared error for each prediction.  It would be a good and more 
logical way to evaluate if the model was able to capture the future pattern. 
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Figure 7 - Mean Squared Error - Training vs Test 

5.2 Living Lab 4  
In this section we show the result of two analyses of the Living Lab 4 data to increase the efficiency of 
storing products in the warehouse. This result is derived from the application of the self-organizing map 
technique to the real dataset. It may be possible to apply the same approach to the forecasted time series 
to predict the future distribution of the goods in the warehouse.  
 
The heatmap shown in Figure 8(a) below shows the distribution of the products according to their weekly 
exit frequency. It has been built with data only related to a quarter of the year 2019.  The heatmap figure 
8(b) shows the distribution according to the quantities involved in daily departures. In other words, the 
timeseries were aggregated in order to identify which percentage of a given product, on a daily basis, is 
present. This type of analysis is similar to the analysis proposed by (Davis, 2017) where the author applies 
SOM to product orders, in the context of Living Lab 4 such a dataset is difficult to archive so we decided 
to apply the same approach but instead of the orders we have used the daily departures records for each 
product. It is interesting to notice that even with such a different aggregation, the SOM is still able to 
capture a topological structure in the dataset leading to the insights that the relation determinated by the 
demands of the users is present even in the daily records. We think this is a sign of the order flow i.e. the 
arrival of products to a warehouse. In future studies, it would be interesting to see if such a trace is present 
even with different datasets leading to the conclusion the it is true that we can use flow of the data trought 
a PI-Node to optimize operations within the node. 
 
We considered an order each day and a structure can be viewed in the dataset.  It is possible to use this 
technique to plan the zones of a warehouse or a store and if this technique is applied to the forecasted 
time series, it can be planned in advance. 
In order to see if we can generate such a prediction from the dataset provided by Stockbooking, we 
trained an LSTM model similar to the one generated for Living Lab 3, with the addition that we are going 
to forecast 4 timeseries together. We made this choice in order to take into the consideration the level of 
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correlation between the four selected values: the units in departure, units in arrival and the palettes 
involved in arrival and in departure. 
There are also several other advantages in knowing in advance the values of these time series. Given the 
goals of Living Lab 4 (e.g. better space utilization of the warehouse) it is evident that knowing in advance 
the flow of goods in arrival can lead to a better usage of the warehouses controlled by Stockbooking. 
 
The Scatterplot in Figure 9 below shows the distribution of the errors of the forecasted time series in 
Living Lab 4’s LSTM.  In contrast to the results obtained on LL3 dataset, there is no difference in the 
distribution of the errors between training and testing, however the error is higher.  Given that the error 
is computed by averaging the error of all four timeseries forecasted by the model, we do not know which 
one is determining the highest error.  A deeper analysis of this result is required to improve the accuracy 
of the model for Living Lab 4. 
 
 

 
Figure 8 – SOM Heat Maps 

Left Map (a): A heat map based on weekly quanity in departure 
Right Map (b): A heat map based over the daily distribution of units in departure  

 
 

 
 

(a) (b) 
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Figure 9 - Scatter Plot: Mean Square Error Training vs Test 
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6 Optimisation PI WebServices & Integration with other PI Services 
 
In this section, we briefly describe the development work involved in updating the Optimisation PI Web 
Services described in the previous version of this deliverable, D2.13. The objective of the Optimisation 
Service is to allow users to create an optimised loading plan to convey PI-Containers by rail-based PI 
Means in an efficient manner. 
The Optimisation Service retains the use of Representational State Transfer (ReST)1 APIs, the Swagger2 
interface and the use of Docker for quick and easy deployment to cloud platforms e.g. IBM Cloud3. The 
previous version of the service consisted of a single rail wagon loading function for creating an optimised 
loading plan of PI-Containers in two-dimensional space (2D) i.e. loading un-stackable PI-Containers to 
a flat-bed rail wagon. Here we describe how the service was augmented with a function for creating an 
optimised loading plan of PI-Containers in three-dimensional space (3D) i.e. loading stackable PI 
Containers to a flat-bed rail wagon or an enclosed rail wagon. In addition to this, we describe an added 
train loading service that processes a rail schedule in a PI-Node and allocates incoming rail wagons to 
appropriate shunting yard lines for forwarding from the PI-Node. 
 
6.1 Web Service Extension 
 
The Optimisation Service is a ReST API, served using the Python Flask web server and packaged for 
deployment as a Docker image. The implementation details for this technology stack remains the same 
as those described in the previous version of this deliverable, D2.13. The following sections describe 
the restructuring of the original version of the service to accommodate the two new functions and the 
implementations of the 3D Wagon Loading API and the Train Loading API. 

 
1!"#$%#&#'()(*+'),!-()(#!.%)'&/#%!
2!-0)11#%!
3!234!5,+67!
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6.1.1 Restructuring the Optimisation ReST API 

 

 
Figure 10 - The original Optimisation Service API 

 
The original Optimisation Service was named the ICONET Wagon Loading API and consisted of a single 
function, called Loading. This Loading function ReST API was implemented with HTTP GET, 
DELETE, POST and PUT methods. The Loading function accepted a list of rail wagons to be loaded 
with PI-Containers and the list of PI-Containers to be despatched. The Swagger interface to the original 
Optimisation Service API can be seen in figure above. The Loading function optimises the PI-Containers 
in 2D space across the input list of rail wagons. Optimisation considers both the spatial restrictions of the 
rail wagon and the maximum weight restriction of the rail wagon. If any PI Containers are unassigned 
due to all available space on the input rail wagons being consumed, one or more new rail wagons with 
the same dimensions as the input rail wagons are created and the remaining PI Containers are assigned 
to them. The Loading function output consists of an optimised JSON loading plan. This loading plan lists 
the rail wagons with their assigned PI Containers. A sample of the input and output JSON formats for 
this API are shown below in 11 below. 
 



D2.14. Intelligent Optimization of PI-Containers and PI-Means in PI-Nodes (Final) 

© ICONET, 2020  Page | 30  

 
Figure 11 - Loading function API inputs and output 

 
Functionally, the Loading API does not need to be changed for this new version of the Optimisation 
Service. However, as we are extending the scope of the service to include a 3D version of the rail wagon 
loading function and the train loading function, we have re-organised the API naming and structure. 
 

 

 
Figure 12 - The ICONET Rail Loading Swagger interface 

 
The previous Loading function API has now been renamed the Wagon (2D) function API. This newly 
named version operates in the same way as before: accepting lists of rail wagons to be loaded and the PI 
Containers to be despatched and producing an optimised loading plan for 2D space. As the focus for the 
Optimisation Service was centred on producing optimised loading plans for rail wagons or trains it was 
decided that the additional HTTP methods (GET, DELETE, PUT) that may have been used for 
management operations were no longer needed. The API functions now employ HTTP POST methods 
only. The Optimisation Service naming has been updated to include the expanded scope of optimising 
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train loading for shunting yard lines and there are new API functions for producing optimised rail wagon 
loading plans in 3D space. The following sections describe these new functions in more detail. 
 
6.1.2 Rail wagon loading in Three Dimensions 

 
The first addition to the Optimisation Service for this deliverable, D2.14, is the Wagon (3D) function. 
PI-Containers that are to be despatched from a PI-Node may be stackable. This means that PI-Containers 
could be loaded onto a flatbed, or enclosed, rail wagon in 3D space. The Wagon (3D) function API was 
implemented in a similar style to the Wagon (2D) function API to ensure that usage of the Optimisation 
Service is consistent for users. The Wagon (3D) function API accepts a list of rail wagons to be loaded 
and a list of PI-Containers to be despatched as input. The input JSON format is the same as that of the 
2D version but with the addition of the third dimension (height) for both rail wagons and PI Containers. 
The three-dimensional PI-Containers are optimised across the input list of rail wagons. Optimisation 
considers both the spatial restrictions of the rail wagon and the maximum weight restriction of the rail 
wagon. If there are unassigned PI-Containers after the input rail wagons space has been consumed, one 
or more new rail wagons with the same dimensions as the input rail wagons are created and the remaining 
PI-Containers are assigned. 
 
The optimisation of the PI-Containers in 3D space is implemented using a Python package called 
py3dbp4. This package is distributed as open source software and it implements optimisation in 3D space 
based on the techniques described in the research paper “Optimizing Three-Dimensional Bin Packing 
through Simulation”5 by Erick Dube & Leon Kanavathy (2006). Py3dbp employs heuristic bin packing 
algorithms to perform the optimisation of the loading arrangement. This package was integrated into the 
Wagon (3D) function API Python implementation and the input JSON rail wagon list and PI Containers 
list are adapted to the specification of the py3dbp interface.  
The Wagon (3D) function API produces an optimised loading plan in a JSON format similar to that of 
Wagon (2D), again, with the added third dimension (height) for both rail wagons and PI Containers. A 
sample of the input and output JSON formats for this API are shown below in Figure 13. 
 

 
Figure 13 - Wagon (3D) JSON input and output 

 

 
4!89:7;$!
5!<$(*=*>*'1!.?%##@A*=#'&*+'),!3*'!8)BC*'1!(?%+61?!-*=6,)(*+'!
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6.1.3 Train loading 

 
Figure 14 - Wagon (3D) JSON input and output 

 
The second addition to the Optimisation Service is the Train loading function API. This function consists 
of two new APIs, Train and Schedule (see Figure 12), and aims to assist users with rail shunting yard 
operations in PI-Nodes. PI-Containers to be despatched may be loaded to rail wagons as part of the rail 
shunting yard process. As shown in 14, Shunting yards consist of several parallel rail lines in a yard that 
are used to sort the incoming trains and wagons for loading and forwarding to their ultimate destination. 
The process of sorting incoming trains at the shunting yard is driven by the arrival schedule for the PI-
Node. The Optimisation Service provides a Schedule generator function API. This API employs the 
HTTP GET method and produces a randomly generated train arrival schedule with the following 
characteristics: 
 

• Daily arrival period (24hrs) 
• Segmented by hour with a maximum of 6 train arrivals in 1 hour 
• Trains have a randomly assigned number of wagons (maximum 15) 
• Wagon destinations are randomly assigned from a list of EU cities 

 
The generated schedule is output in a JSON format as a list of trains with associated wagons and sorted 
by arrival time in ascending order. The Schedule API is provided as a convenience feature for testing the 
Train loading API. 
The Train loading function API accepts the arrival schedule JSON as input along with the number of 
available shunting lines. The API produces a rail wagon and shunting line allocation table in a JSON 
format. This output shows the user how to allocate rail wagons to the shunting lines as they arrive. 
We believe adding this functionality to the Optimisation Service complements the rail wagon loading 
functions, Wagon (2D) and Wagon (3D), by generating loading plans for the end-to-end rail loading 
process in the PI Node. 
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6.2 Integration with other Services 
 
Under the paradigm of PI, centralized activities of a supply chain network may become autonomous but 
will continue cooperating with each other to reach a global optimization goal. The scope of optimisation 
service is to optimize the operations within the PI-Hub. In the previous sections, we highlighted how 
optimization service works, and in this section, we provide details on how the results of the optimization 
service are consumed by other service or vice versa. We show the interactions between optimization and 
other services in Figure 15. 
 

 
Figure 15 - Interaction between optimization and other services 
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6.3 Integration with Optimization and Routing 
 
One straight-forward consumer of the optimisation service’s results is the routing service. As described 
in deliverables (D2.4 & D2.5), the routing service determines the optimal route from a source to a 
destination through some intermediary hubs. Routing service is formulated Travelling Salesman Problem 
(TSP) with constraints guided by LLs. One of the constraints that the routing service considers is the cost 
of processing PI-Containers at the intermediary hub. For the LL3 and LL4, the cost of processing at the 
PI-Hub is represented as availability of product stock and the pallet storage respectively.  
 
For example, in the network shown in Figure 16, there are link costs as well as the processing costs for 
each PI-hub (shown in green). Now if routing service is required between nodes A and Z, when finding 
the path, the total cost is calculated as: 𝑐𝑜𝑠𝑡	 = 	𝑙𝑖𝑛𝑘_𝑐𝑜𝑠𝑡	 + 	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑠𝑡, where processing cost 
is coming from optimization service. In the LL3, this cost represents the predicted stock per store. Based 
on this predicted stock, routing service decides on order fulfilment strategy by routing the vehicle to pick 
up items from stores which have the available stock considering the delivery date of the order.  
 

 
Figure 16 - Example network 
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7 Conclusion 
 
After months of intense work and collaboration with key operators in the logistics chain, we concluded 
that the Physical Internet could drive significant global change in the delivery of goods. It is also 
envisaged that research will continue into how to optimize these services along a decentralized stack, 
such as the digital internet; we have also seen evidence that modern machine learning techniques can 
considerably help towards this direction. 
 
We have shown that the LSTM network has the power to predict better future evolution of stocks rather 
than the classic econometrics model. It is also clear that the volume of data allowed for the creation of 
accurate, deployable models for forecasting, as well as heuristic algorithms, can be a simple yet 
extremely efficient solution to an irreducible issue of computation for rail operations.  
 
The creation of this community of operators, those in the logistics field and those like IBM in software 
engineering, is one of the key elements that will allow us to produce more advanced solutions in future.  
The level of accuracy shown by our LSTM model and its persistent superiority in respect of the standard 
econometric approach not only represent hope for the future but also continue to show the incredible 
power of machine learning solutions. With the increased effort demonstrated by IBM in its journey in 
cloud services as well as the level of knowledge acquired during this project, we will able to deploy more 
accurate solutions.  Leveraging the power of edge computing could feasibly result in increased speed and 
also real time optimisation of operations. 
 
We have demonstrated how our solutions presented in this deliverable can bring value to the Living Labs 
in the ICONET project. In the case of LL1, our partner PoA, the multi-dimensional heuristic algorithm 
presented and implemented, is a simple and efficient solution. If offers an increase in number of 
transports per day and an increase in the amount of units loaded per train. This is a direct consequence 
of the full utilization of the wagons in the rail network. If all possible containers are loaded on a train as 
it departs, this meana there will be more slots available for other movements, something that the random 
association performed nowadays is not doing due to the backlog of containers to be moved. 
 
In Living Lab 4, our partner Sockbooking has seen the value of their dataset in the application of self-
organized maps and LSTM neural network: as our analysis demonstrates how a better usage of warehouse 
floor can be archived by clustering the products more effectively. Also, we have seen that a sign of the 
users order flow could be seen in recorded data of activities of warehouses.  Finally, we have seen how 
accurate, flexible and easily deployable an LSTM model can be. LL3 Sonae, would benefit from the 
usage of an accurate predictive model which could potentially lead to a decentralization of the operations 
of order fulfilment. The integration with the routing service also brings a better utilization of the Movers 
used within the Living Lab. 
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9 Annex I – Pseudocode 
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10 Annex II – Overview of LSTM (long short-term memory) 
 
In this annex, we seek to aid the understanding of the machine learning model used in this deliverable, 
by leveraging an excellent informative blog by Christopher Olah for LSTM. 
 
Long short-term memory (LSTM) networks are a special kind of recurrent neural networks (RNNs).  
Recurrent neural networks address the issue of making prediction according to a sequence of inputs rather 
than only by looking at a single one. They are networks with loops in them, allowing information to persist. 

 
Figure 1 - Neural Network Chunk 

 
 
In Figure 1, a chunk of a neural network, A, looks at some input 𝑥!	and outputs at value ht. A loop allows 
information to be passed from one step of the network to the next. These loops make recurrent neural 
networks seem quite complex. However, upon further analysis, it turns out that they are not very different 
from an ordinary feedforward neural network. A recurrent neural network can be thought of as xmultiple 
copies of the same network, each passing a message to a successor. Consider what happens in Figure 2 
when a loop is unrolled: 

 

 
Figure 2 - Neural Network Loop 

 
Long Short-Term Memory networks are capable of learning long-term dependencies and are explicitly 
designed to avoid the long-term dependency problem. Remembering information for long periods of time 
is inherent to their design. All recurrent neural networks have the form of a chain of repeating modules 
of neural network. In standard RNNs, this repeating module will have a very simple structure, such as a 
single tanh layer. 
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Figure 3 - Tanh Layer 

 
LSTMs also have this chain-like structure, but the repeating module has a different structure. Instead of 
having a single neural network layer, there are four interacting layers. 
 

x 
Figure 4 - Detailed LSTM 

 
 
In Figure 4, each line carries an entire vector, from the output of one node to the inputs of others. The 
pink circles represent pointwise operations, like vector addition, while the yellow boxes are learned 
neural network layers. Lines merging denote concatenation, while a line forking denotes its content being 
copied and the copies going to different locations. 
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11 Annex III – Overview of SOM (Self Organising Maps) 
 
Self-Organising Feature Maps, or SOMs, provide a way of representing multidimensional data in much 
lower dimensional spaces - usually one or two dimensions. The process of reducing the dimensionality 
of vectors is essentially a data compression technique known as vector quantisation. In addition, the 
Kohonen technique creates a network that stores information in such a way that any topological 
relationships within the training set are maintained. 
 
A common example used to help teach the principals behind SOMs is the mapping of colours from their 
three-dimensional components - red, green and blue, into two dimensions. Figure 10. below shows an 
example of a SOM trained to recognize the eight different colours shown on the right. The colours have 
been presented to the network as 3D vectors - one dimension for each of the colour components - and 
the network has learnt to represent them in the 2D space you can see. Notice that in addition to clustering 
the colours into distinct regions, regions of similar properties are usually found adjacent to each other.  

 

Figure 1 - Screenshot of the demo program (left) and the colours it has classified (right) 

 
One of the most interesting aspects of SOMs is that they learn to classify data without supervision. 
Training a SOM, however, requires no target vector.  A SOM learns to classify the training data without 
any external supervision whatsoever.   
 
11.1.1.1 Network Architecture 

For the purposes of this deliverable, the discussion centres on a two-dimensional SOM. The network is 
created from a 2D lattice of ‘nodes', each of which is fully connected to the input layer.  The figure below 
shows a very small Kohonen network of 4 X 4 nodes connected to the input layer (shown in green) 
representing a two-dimensional vector. 
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Figure 2 - A simple Kohonen network 

Each node has a specific topological position (an x, y coordinate in the lattice) and contains a vector of 
weights of the same dimension as the input vectors. That is to say, if the training data consists of 
vectors, V, of n dimensions: 
 

V1, V2, V3...Vn 
 
Then each node will contain a corresponding weight vector W, of n dimensions: 
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Figure 3 - Each cell represents a node in the lattice (size 40 x 40) 

 

11.1.1.2 Learning Algorithm Overview 

A SOM does not need a target output to be specified unlike many other types of network. Instead, where 
the node weights match the input vector, that area of the lattice is selectively optimized to more closely 
resemble the data for the class that the input vector is a member of.  From an initial distribution of random 
weights, and over many iterations, the SOM eventually settles into a map of stable zones. Each zone is 
effectively a feature classifier, so you can think of the graphical output as a type of feature map of the 
input space. If you take another look at the trained network shown in Figure 12 above, the blocks of 
similar colour represent the individual zones. Any new, previously unseen input vectors presented to the 
network will stimulate nodes in the zone with similar weight vectors. 
 


