

Users'/Advisory Board Webinar

9th December 2020

Welcome and introductions

Overview of the LOGISTAR project (Deusto)

Outcomes from the strategic analysis in horizontal collaboration (Preston & Ahlers)

Business models (MDS Transmodal)

Progress in the LOGISTAR system
(Software AG, DbH & Genegis)

Overview of the 3 Living Labs by the stakeholders
(Nestle & pladis, Codognotto , Chep and Ahlers)

Final discussion, closure and next steps

Enhanced data management techniques for logistics optimization

Users' Board Webinar

9th December 10:00 - 12:00 CET

PROJECT OVERVIEW

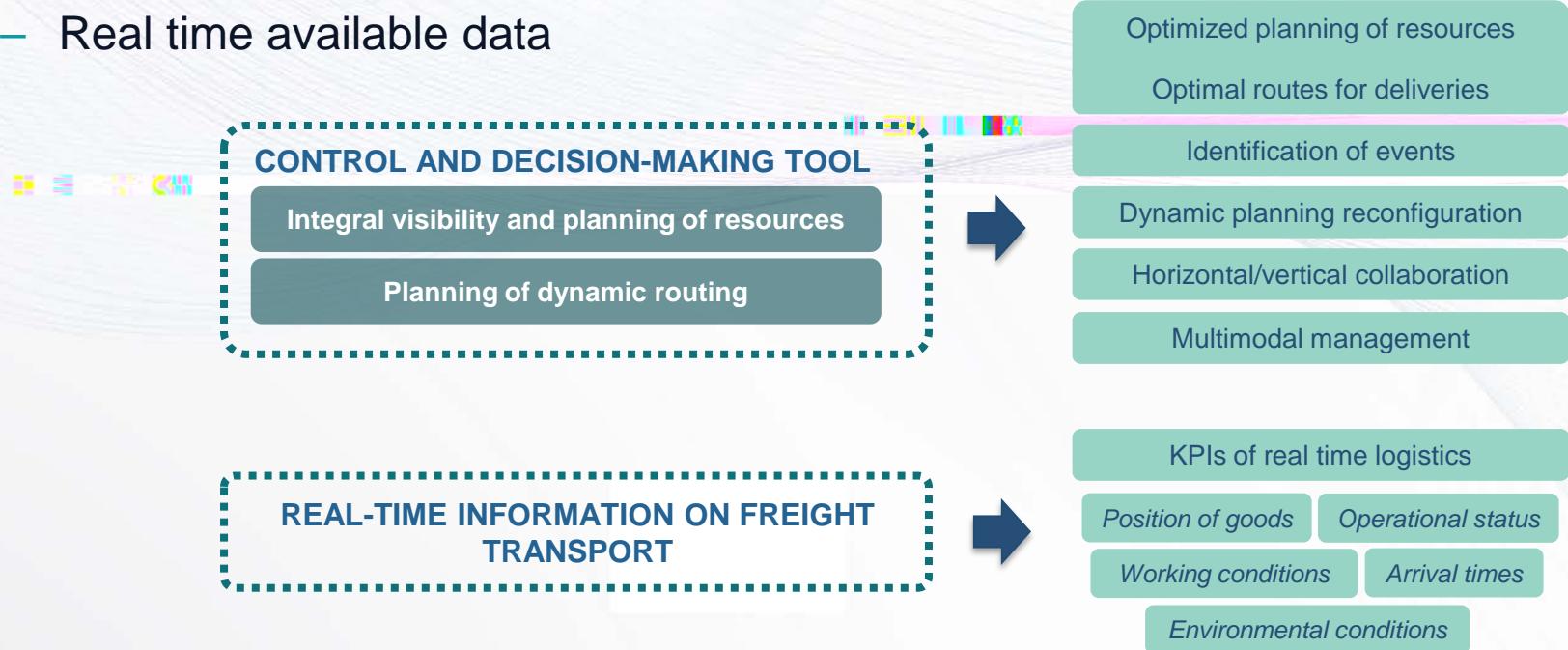
LOGISTAR - Enhanced data management techniques
for real time logistics planning and scheduling

About LOGISTAR

Consortium of **15 partners**, coordinated by the University of Deusto (Spain)

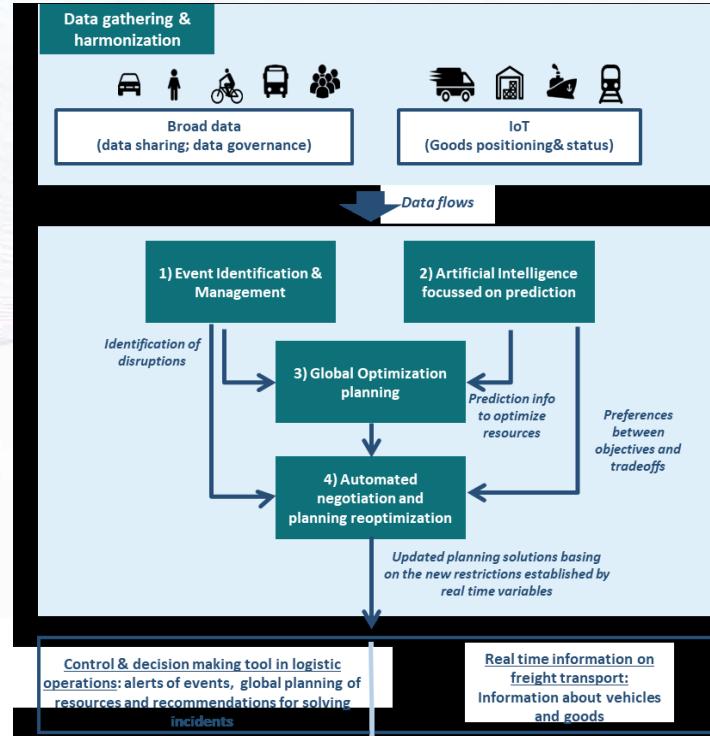
- Budget: **4.997.548,75 €**
- Duration: **40 months** (until September 2021)

Project managed by INEA agency - Innovation and Networks Executive Agency (European Commission)


Project funded by H2020:

- Work programme: **Smart, green and integrated transport**
- Call: MG-5.2-2017: **Innovative ICT solutions for future logistics operations**

LOGISTAR overall concept

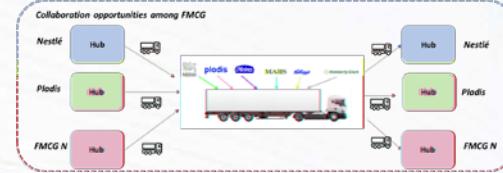

Effective planning and optimization of transport operations

- Horizontal collaboration
- Real time available data

LOGISTAR overall concept

- To **leverage the available data**, to process it and **to deliver services**
 - Data will be retrieved and harmonized
 - Sensors will be **connected to a cloud IoT platform**
- Information used by **smart algorithms for**
 - Predictions
 - Learning the preferences
 - Optimization of the planning of operations
 - Automated negotiation and re-optimization
- **Real-time dashboards** which will provide an overview to managers of what is happening

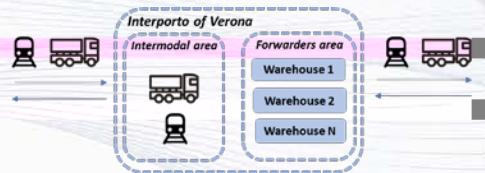
Key innovation aspects


- **Artificial Intelligence focused on prediction**
 - Inference based on event detection and probabilistic programming frameworks
- **Global optimization planning**
 - Realistic optimization models based on Robust and Multi-Objective Optimization.
 - Hybrid metaheuristics based on paradigms of parallel computing
- **Automated negotiation and planning re-optimization**
 - Constraint satisfaction problem solving techniques
- **Event Identification Rules**
 - A new application domain for the processing of complex events and their aggregation
- **Service layer – Decision making tool**
 - Increased data gathering, cleansing and structuring
- **Data gathering techniques**
 - ETL tools for Linked Data. Scraping and transforming

Living labs

Backhauling and Co loading

To improve backhauling management

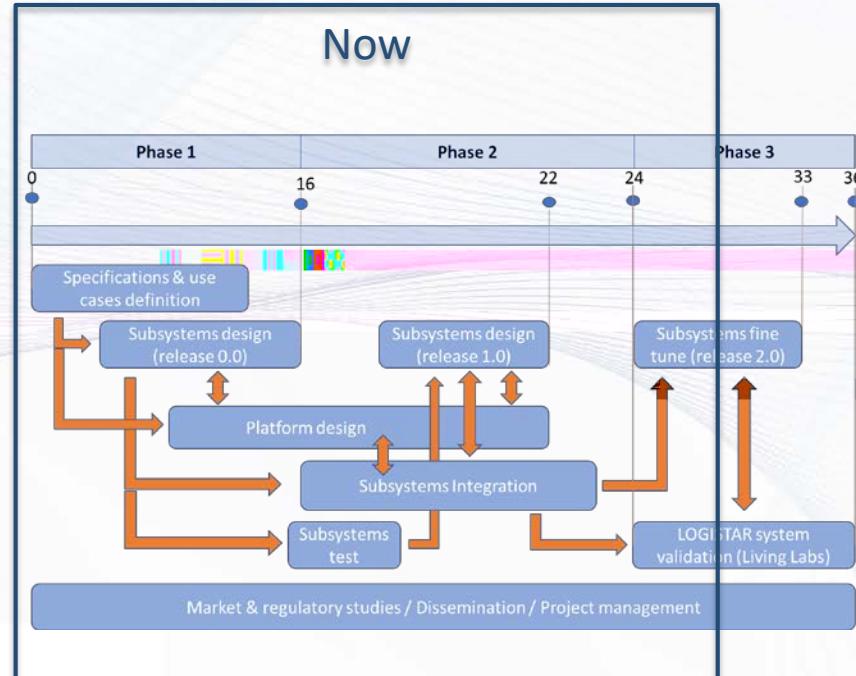

Overall overview of the status of the operations

Synchromodalit

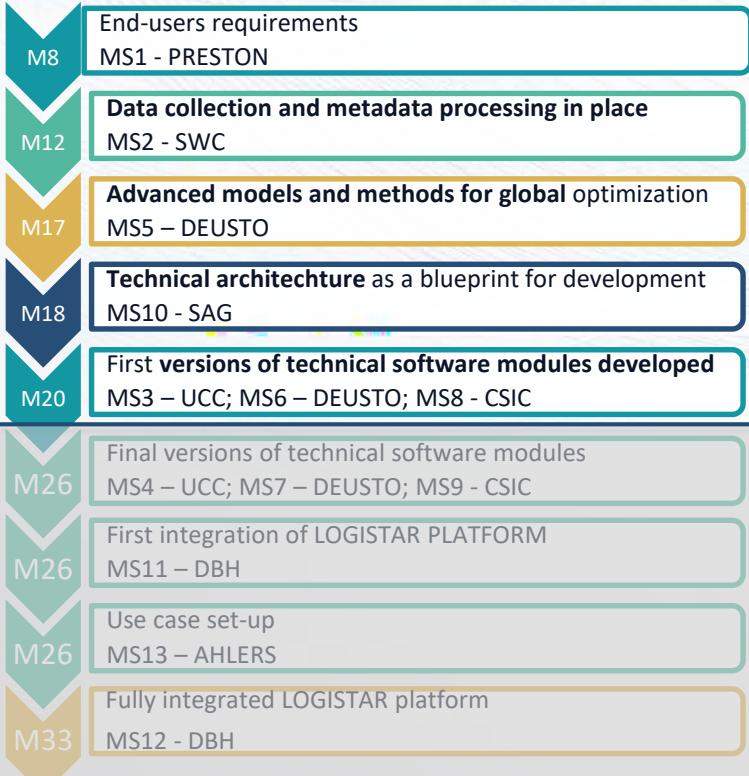
Planning of multimodal routes

Real time monitoring

Dynamic Appointment Scheduling Accurate ETA Calculation for Trucks


Reduction of waiting times at loading and unloading locations

Virtual Living Lab


Based on historic data from real supply chain operations
allowing to implement stress test over the solution

- Phase 1 [M1 – M16]
 - Specification and use cases definition
 - Subsystems & platform design
- Phase 2 [M16 – M24]
 - Platform design & Integration
 - Subsystems release 1.0
- Phase 3 [M24 – M36]
 - System validation
 - Subsystems fine tune
- All [M1 – M36]
 - Market studies
 - Dissemination
 - Management

Timeline

Milestones

- User needs and system requirements
- Analysis on horizontal collaboration and Regulation aspects
- Data sources and Data storage
- Events processing module
- Algorithms for prediction in logistics
- Methods for global optimization
- Re-optimization algorithms
- LOGISTAR architecture design (v1.0)
- Use cases and validation plan
- Website & dissemination material
- Business models

Partners and roles

 Deusto Universidad de Deusto Deutsches Universitäts University of Deusto	Project Coordinator Global optimization planning techniques		Implementation and integration of services
	Artificial Intelligence techniques focused on prediction		Geo-special oriented software solutions
	Automated negotiation algorithms		Testing and validation – Real time logistics in chemical industries use case
	Cloud IoT data		Testing and validation – Multimodality use case Dissemination activities
	Data gathering and harmonization		Testing and validation – Backhauling and co-loading use case
	End-users engagement		Testing and validation – Backhauling and co-loading use case
	New and emerging business models assessment		Testing and validation – Multimodality use case
	Predictive analysis and processing of real-time data	 A Brambles Company	Testing and validation – Synchronomodality use case

Contact details

www.logistar-project.eu

A Brambles Company

Project coordination:
enrique.onieva@deusto.es
cluengo@deusto.es

LOGISTAR project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769142.

Outcomes from the strategic analysis in horizontal collaboration

Dr Andrew Palmer - Preston Solutions Ltd
Filip Lazovic – Ahlers

<u>FMCG</u>	<u>Chemicals</u>	<u>LSP</u>	<u>Other</u>
Nestle Pladis Kelloggs Mars Kimberly Clark Asda Procter & Gamble Tesco	Huntsman Celanese Vynova Du Pont Corbion BP Chemicals	Ahlers Codognotto NFT Turners of Soham CLdN Cargo	Zailog Chep Toyota

Discussed

- Supply chain network
- Transport operations & systems
- KPI's

Four sectors considered

- FMCG - Flow data from 5 companies analysed
- LSP's - Flow data from 3 LSPs analysed
- Terminal Operators - Data related to 7 terminals considered
- Chemicals - Flow data from 7 companies analysed

Strategic analysis - Purpose

1. To gain an understanding of the transport operations
2. To identify any inefficiencies/anomalies
3. To identify any commercial opportunities for the companies
4. To show companies collaborative opportunities in order to encourage involvement in the LOGISTAR project
5. To identify opportunities for LOGISTAR system
6. To assess LOGISTAR's ability to find those opportunities

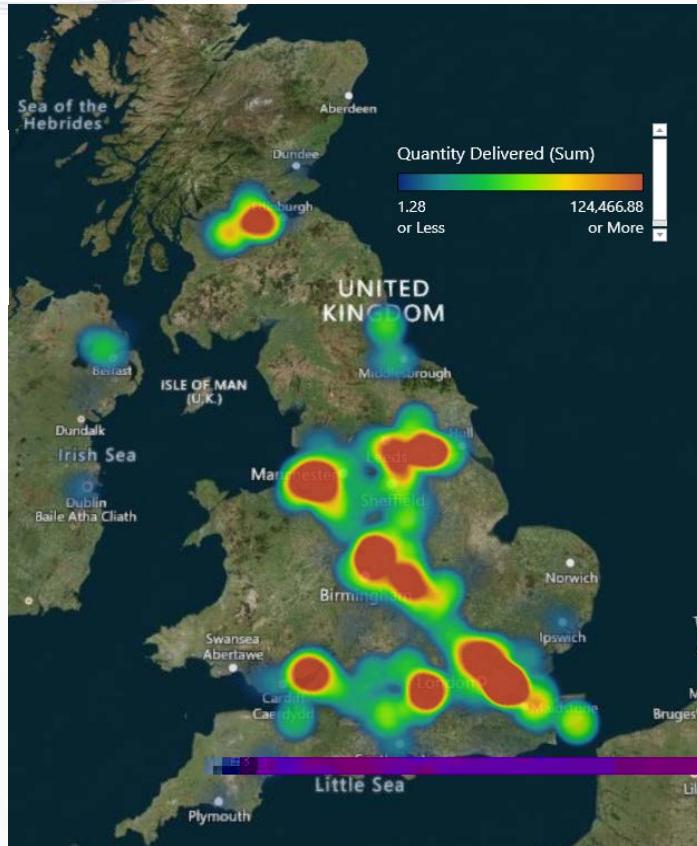
Software used

- Spreadsheet functionality with add ins and macros
- Strategic network design interfaced to software for collaborative analyses - PSL
- BBaRT: Bundling, Backhauling, and Roundtrip Tool – Ahlers
- Llamasoft SC Guru - Ahlers
- Tableau - Ahlers

1. Base case analysis (data manipulation)

- High level totals and percentages
- Seasonality
- Delivery & load analysis (by pallet, dels/load, delivery time accuracy)
- Delivery & load analysis (time: by hour of the day, day of the week, day of the month, month of the year)
- Customer pareto
- Regional densities
- Costs, kilometres, no of vehicles and CO2 emitted

2. Company efficiency and opportunities

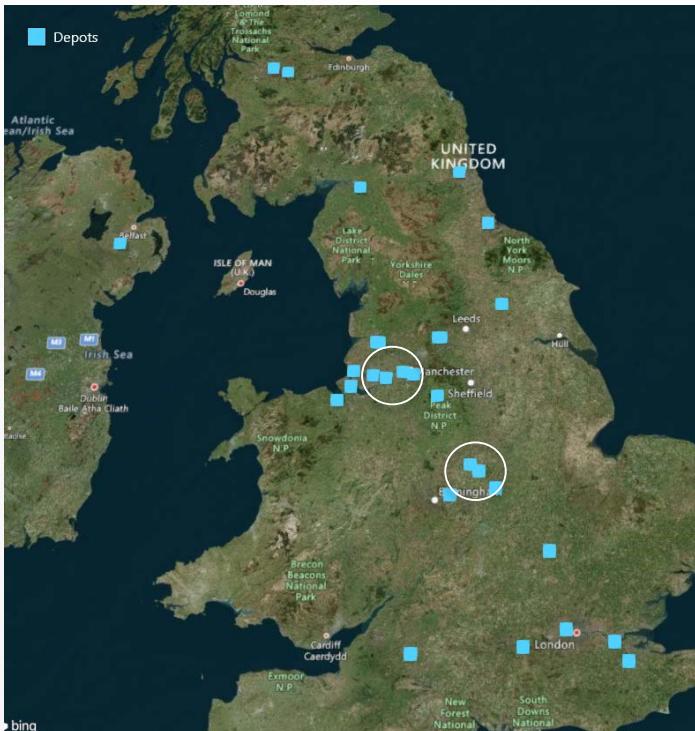

- Centre of gravity analyses
- Alternative vehicle types

3. Collaborative opportunities

- Backhaul opportunities
- Co-loading of small deliveries
- Consolidation of small deliveries
- Use of regional consolidation centres
- Use of urban consolidation centres
- Logistics clusters
- Multi modal opportunities

FMCG 5 company base case analysis

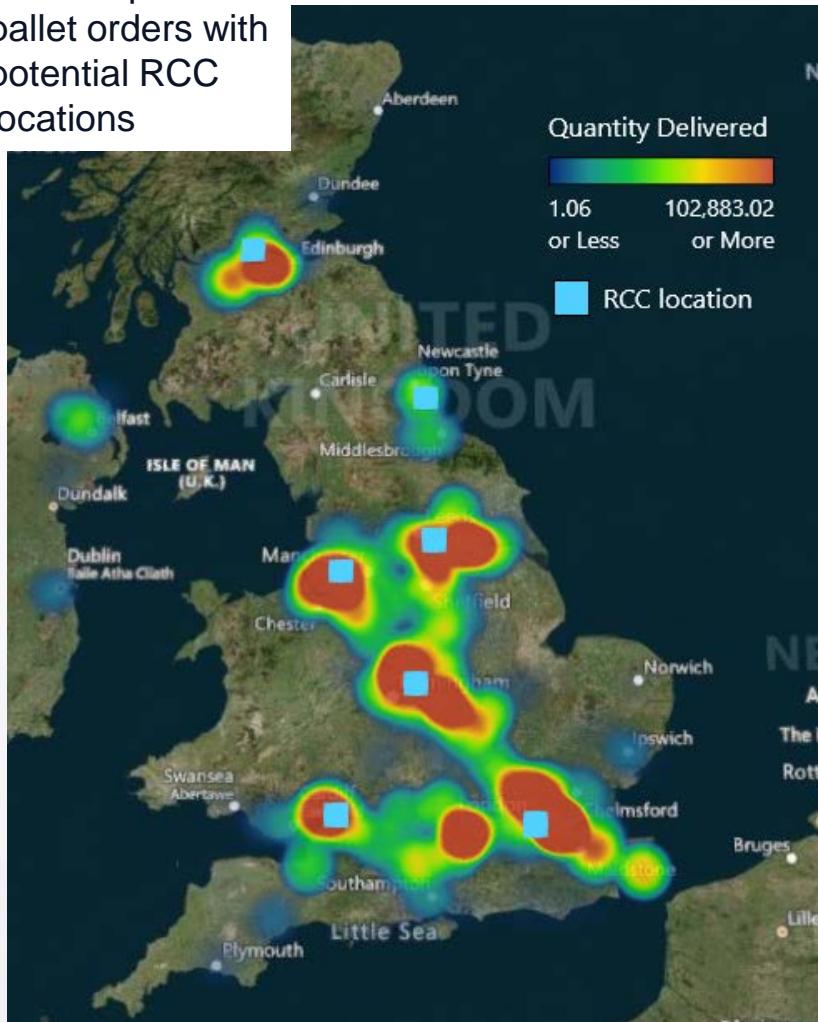
Heat map
of pallets
delivered



	Number of Source/Dest.	Number of Movements	Quantity Moved	Total Cost	Total Distance	Total Hours	No. of Vehicles	Tonnes of CO2
Delivery	5,494	617,940	11,548,539	£187,134,133	178,537,762	3,440,069	766	170,213
Supply	459	84,271	2,088,944	£30,140,992	29,160,138	554,314	123	27,801
Total	5,953	702,211	13,637,483	£217,275,125	207,697,900	3,994,384	889	198,013

Backhauling

No of Flows	Cost saving	Km saving	Tns CO2 saving	
	over 2 way	over 2 way	over 2 way	
67	40.0%	42.6%	42.6%	of all i/c collab movements
5657	3.3%	3.3%	3.4%	of all flows
844				



- LTL classified as less than 60% of FTL
- Locations of depots with sufficient quantity of LTL orders.
- Can be considered for co-loading.
- Depots situated in North West and Midlands look promising but customers need to be sufficiently far away to show cost savings

LTL only from selected depots	Base case cost	Cost with co-loading	Cost saving	% saving
Company A	£152,032	£106,702	£45,330	30%
Company B	£2,697,786	£1,859,288	£838,498	31%
Company C	£2,384,413	£1,465,579	£918,834	39%
Company D	£281,382	£196,670	£84,713	30%
Total	£5,515,613	£3,628,238	£1,887,374	34%

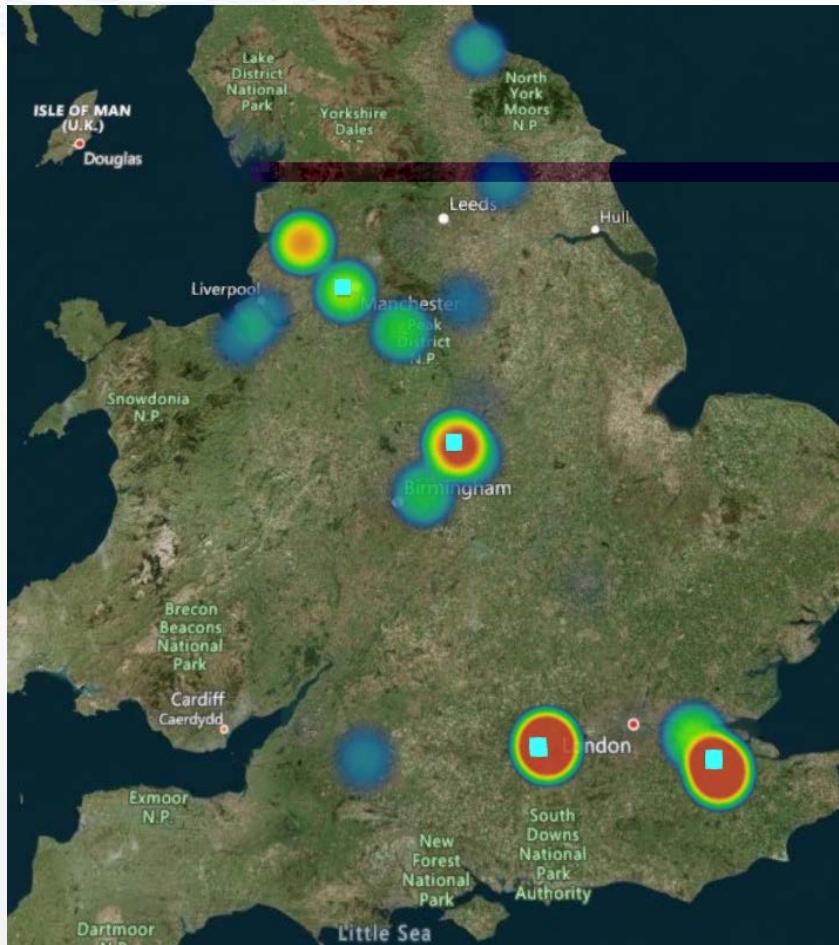
Regional consolidation centres

Heat map of LTL
pallet orders with
potential RCC
locations

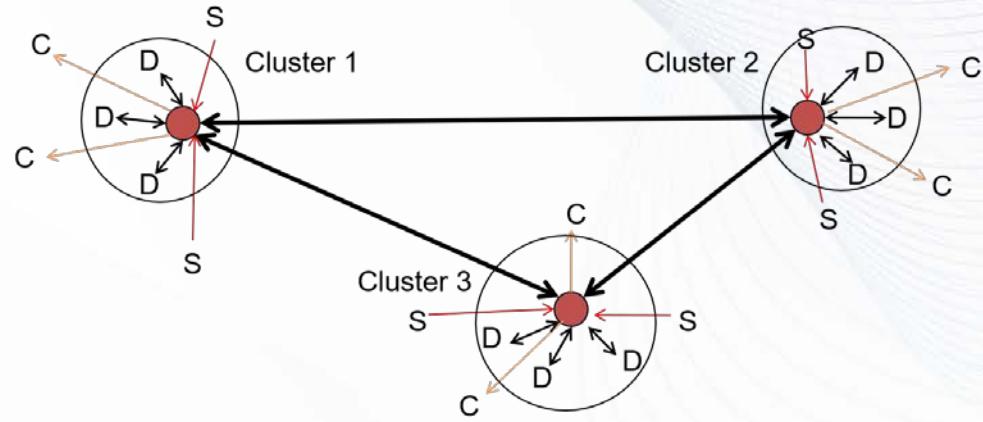
	Quantity moved	LTL cost	Kms travelled
Base case	2,231,645	£77,425,745	78,852,119

	Cost saving (£)	% saved	Km saving	% saved
Company A	£7,082,384	30%	11,033,246	44%
Company B	£8,111,912	45%	11,879,794	60%
Company C	£3,553,341	24%	6,469,254	44%
Company D	£2,567,400	22%	5,278,284	45%
Company E	-£56,066	-1%	1,158,939	15%
Total	£21,258,970	27%	35,819,516	45%

- Savings based on LTL movements only
- 4 of the 5 FMCG companies benefited under this scenario
- Company E did see a reduction in kilometres.
- Companies A and B received the greatest benefit.
- Does not include the cost of RCC's


Urban consolidation centres

UCC area	No of delivery locations	No of depots serving UCC area
Birmingham	176	23
Edinburgh	14	10
London	528	21
Manchester	71	15
Norwich	5	4
Total	794	26


UCC location	No of delivery locations	Cost benefit	Km benefit	Cost saving %	Km saving %
Birmingham	73	£127,197	253,680	21%	46%
London	331	£3,980,074	5,337,419	48%	58%
Total	404	£4,107,271	5,591,099	46%	58%

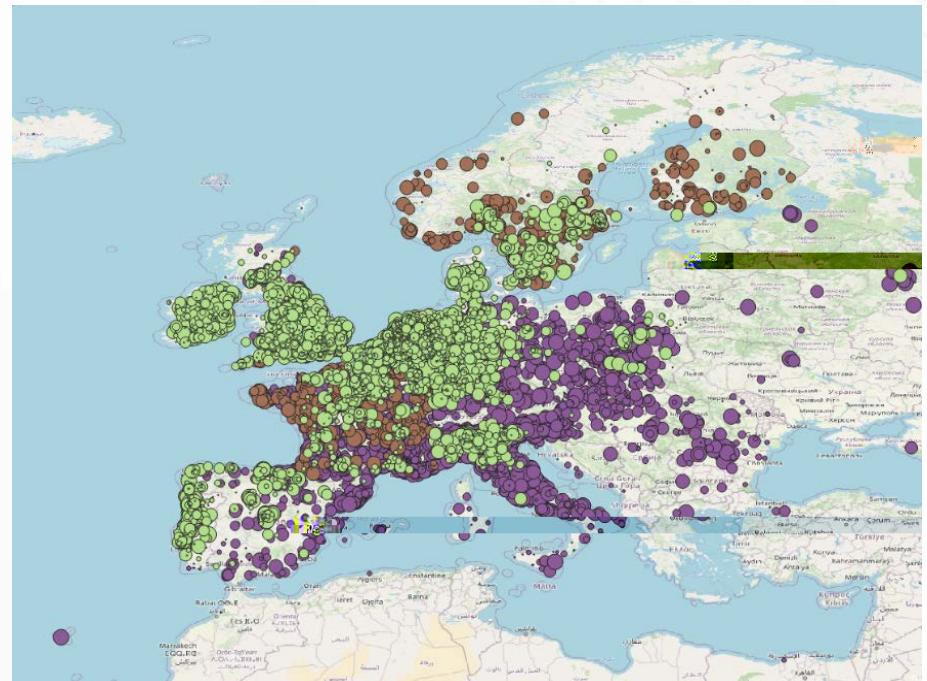
Company	No of delivery locations	Cost benefit	Km benefit	Cost saving %	Km saving %
Company A	80	£2,571,097	3,346,168	55%	64%
Company B	15	£379,442	485,892	59%	67%
Company C	180	£637,895	1,018,744	28%	43%
Company D	129	£518,838	740,294	39%	53%
Total	404	£4,107,271	5,591,099	46%	58%

FMCG Logistics clusters (PI)

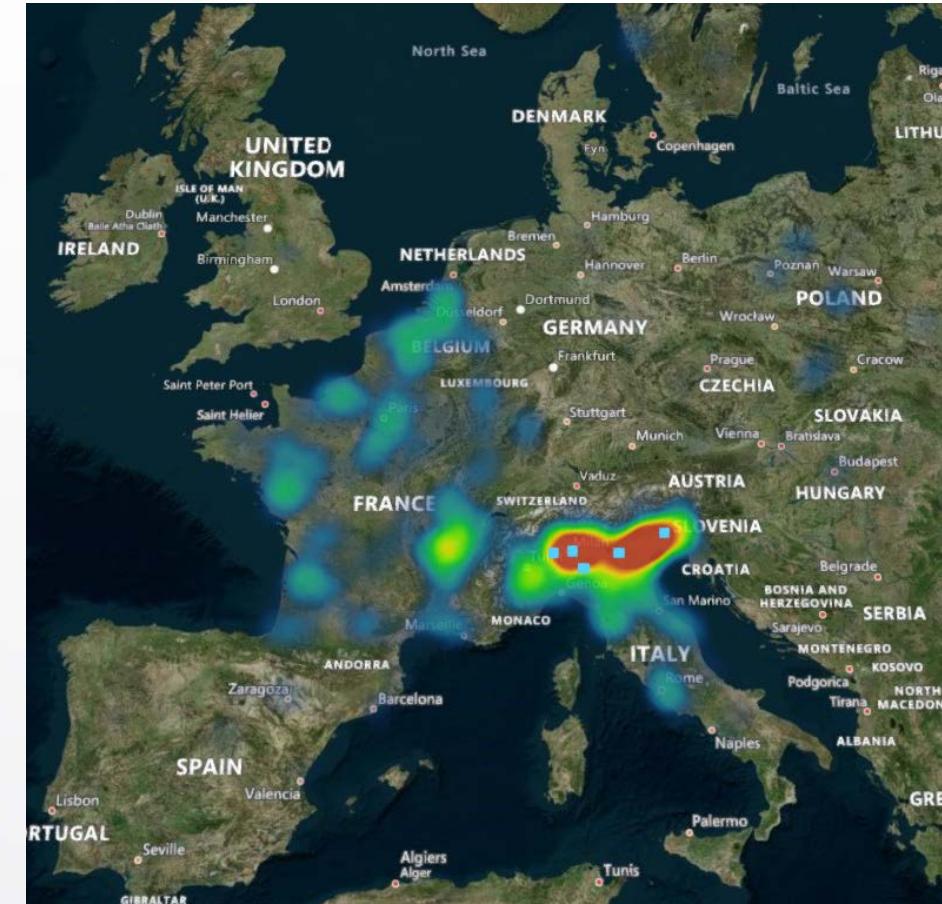
DC location pallet throughput heat map with 4 potential clusters

Cluster area	Cluster name	No of DCs in cluster
North West	Trafford Park	5
Midlands	Ashby De La Zouch	9
West of London	Wokingham	3
East of London	Halling	3

Only the 2 cluster strategy Ashby & Wokingham showed any benefit with a 4% cost reduction, 18% km & CO₂ reduction and 13% fewer vehicles


- Six rail terminals considered
- Relationship between road distance and rail distance
- Three road distance bands (up to 2mls, 15mls, 30mls)
- Minimum 300km of rail distance to be economically viable
- 26 pallets per wagon, 22 wagons per train

From	To	Trailers/day	Trains/day
East Midlands	Greater London	35	1.2
Greater London	East Midlands	46	1.5
East Midlands	North West	38	1.3
North West	East Midlands	98	3.3
North West	Greater London	38	1.3
North West	North East	39	1.3
North West	Scotland	37	1.2
North West	South East	51	1.7
North West	West Midlands	47	1.6
South East	South West	100	3.3
East Midlands	South East	38	1.3


LSP's and Terminal Operators

- Detailed base case analysis of historic data for each of the three LSP companies
 - Data cleaning and validation
 - Geocoding
 - Locational and density heat maps
 - Seasonality
 - Delivery sizes
 - Delivery times
 - Pareto

LSPs/Terminals trips heat map

Collections

Deliveries

LSPs/Terminals outcomes

Country	lane	Company A	Company B	Company C	Total	Second largest
BE-BE		25	1940	5176	7141	1940
BE-FR		114	1929	1711	3754	1711
IT-GB		1558	0	1916	3474	1558
NL-SE		0	1290	1291	2581	1290
FR-FR		1916	272	1129	3317	1129
FR-GB		117	986	11132	12235	986
DE-DE		830	0	1913	2743	830
BE-SE		0	2599	733	3332	733
GB-IT		624	0	782	1406	624
IT-IT		8138	0	607	8745	607
NL-BE		0	897	539	1436	539
SE-BE		0	513	2024	2537	513
PT-FR		499	0	503	1002	499
ES-ES		499	0	883	1382	499
BE-GB		85	428	24637	25150	428
GB-FR		376	114	5994	6484	376
PL-PL		2096	0	376	2472	376
GB-GB		363	12	9908	10283	363
PL-GB		358	0	373	731	358
DE-GB		297	2	19181	19480	297
GB-BE		123	266	28885	29274	266
SE-NL		0	256	692	948	256
GB-DE		256	0	6202	6458	256
BE-NL		2	233	240	475	233
BE-IT		358	0	181	539	181

Top 25 country-lane overview of annual trips for the three companies

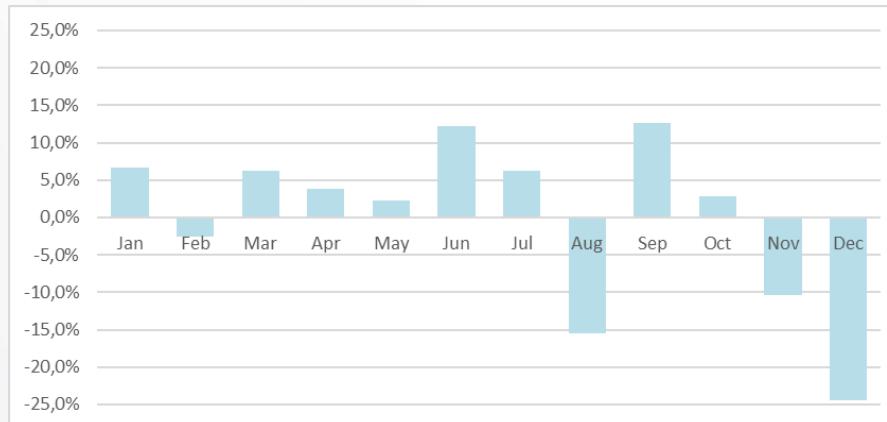
	Using Verona Segrate RFTs in Ital	Using centres of gravity as RFTs in Ital
Intermodal	UK road distance	€ 717,338
	Main rail leg distance	€ 3,748,247
	IT road distance	€ 742,550
Total		€ 803,514
Direct b road		
Saving for rail over road		

Chemical companies analysis

- Six Chemical companies totals

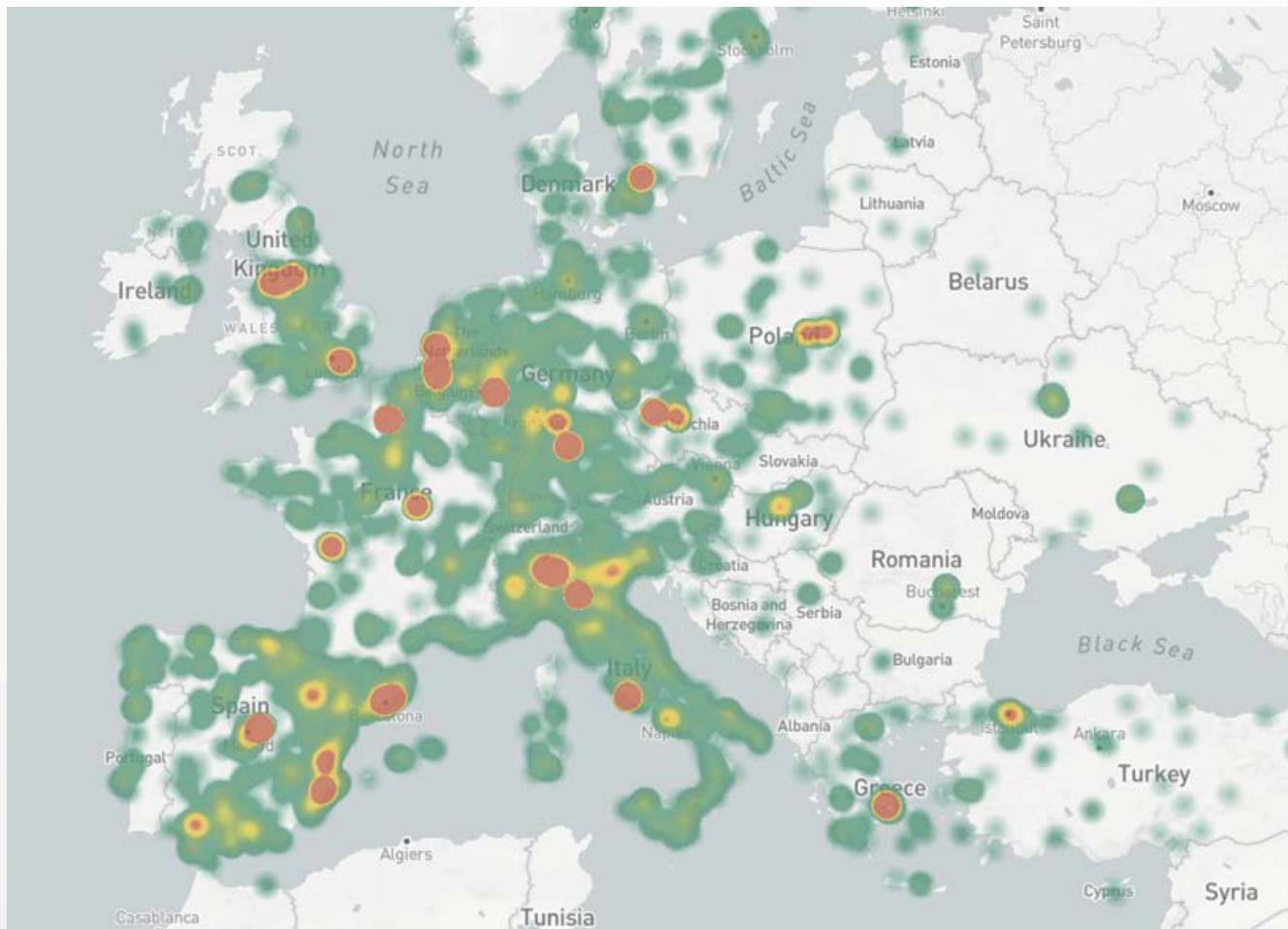
Number of Destination Locations	Number of Origin Locations	Number of Deliveries	Quantity Moved (kg)	Total Cost	Total Distance (km)
3.622	82	195.025	2.392.458.411	77.133.704 €	98.762.105

- Split per Chemical company


Shipper	Number of Destination Locations	Number of Origin Locations	Number of Deliveries	Quantity Moved (kg)	Total Costs
A	62	2	2.381	4.431.342,26	966.406 €
B	90	7	1.374	20.080.982,56	1.460.781 €
C	76	1	1.912	20.316.514,08	903.607 €
D	117	2	1.157	4.357.430,85	738.569 €
E	2.759	50	180.115	2.276.969.270,63	68.402.293 €
F	518	19	8.086	66.302.871	4.662.049 €

Chemicals Base case analysis

- Profile of customer orders: Very high proportion of LTL orders



- Seasonality: fairly even across months, with high season in June/September, and low season in August, November/December

Chemicals Base case analysis

- Heat map of kilograms delivered by chemical companies in Europe

Results of the Analysis

- Backhaul, Co-Loading Results (7 opportunities)

Cost Overview - Gains for the community

	Individual	Combined
Total		

Route Utilization - Gains for the community

	Individual	Combined
Total		

Total Kilometers - Gains for the community

	Individual	Combined
Total		
	km	km

- Regional CC and Alternative Transport Modes Results

Scenario	Baseline		Open	DC	Open	DC MEGA
Total Cost						
Savings in Percentages						
Total Km Driven						
Savings in Percentages						

- Logistics Clusters and Multimodal collaboration Results

Scenario	Baseline	Open	CLUSTER	Open	CLUSTER Rail
Total Cost					
Savings in Percentages					
Total Km Driven					
Savings in Percentages					

Contact information

www.logistar-project.eu

Contact information of the speakers:
andrew@prestonsolutions.co.uk
filip.lazovic@ahlers.com

@LOGISTAR_H2020

Logistar Project group

LOGISTAR project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769142.

- Not involved in the development of the technology behind LOGISTAR
- Providing a 'business advice service' to the consortium
 - Structure of the logistics market in Europe
 - Key commercial players
 - Logistics business models adopted
 - New and emerging models e.g. e-commerce
 - EU Transport policy
 - EU law covering both horizontal and vertical collaboration
 - Fair competition
 - Data sharing
- Outputs will inform future exploitation plan
- Produced four reports to date
 - Desk-top research and case studies

Key Conclusions To Date

- Majority of cargo is now moved by 3PLs and road hauliers etc.. on behalf of shippers
- Significant levels of collaboration already occurring
 - Within 3PLs – fleets utilised to convey cargo for multiple shippers
 - Between 3PLs/road hauliers – sub-contracting loads to ensure vehicle fill and minimise empty running
 - Variety of methods adopted to plan loads, seek sub-contractors etc..
- Opportunity for LOGISTAR to 'digitalise' this process
 - Flows into and between large scale distribution centres
- Market test these desk-top conclusions with key industry operators

Contact Information

software AG

dbh

dbh Logistics IT AG

www.logistar-project.eu

Michael Hatfield

MDS Transmodal Ltd

+44 (0)1244 348301

mike.hatfield@mdst.co.uk

LOGISTAR project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769142.

Progress of the LOGISTAR System

User Board Webinar – December 9th, 2020

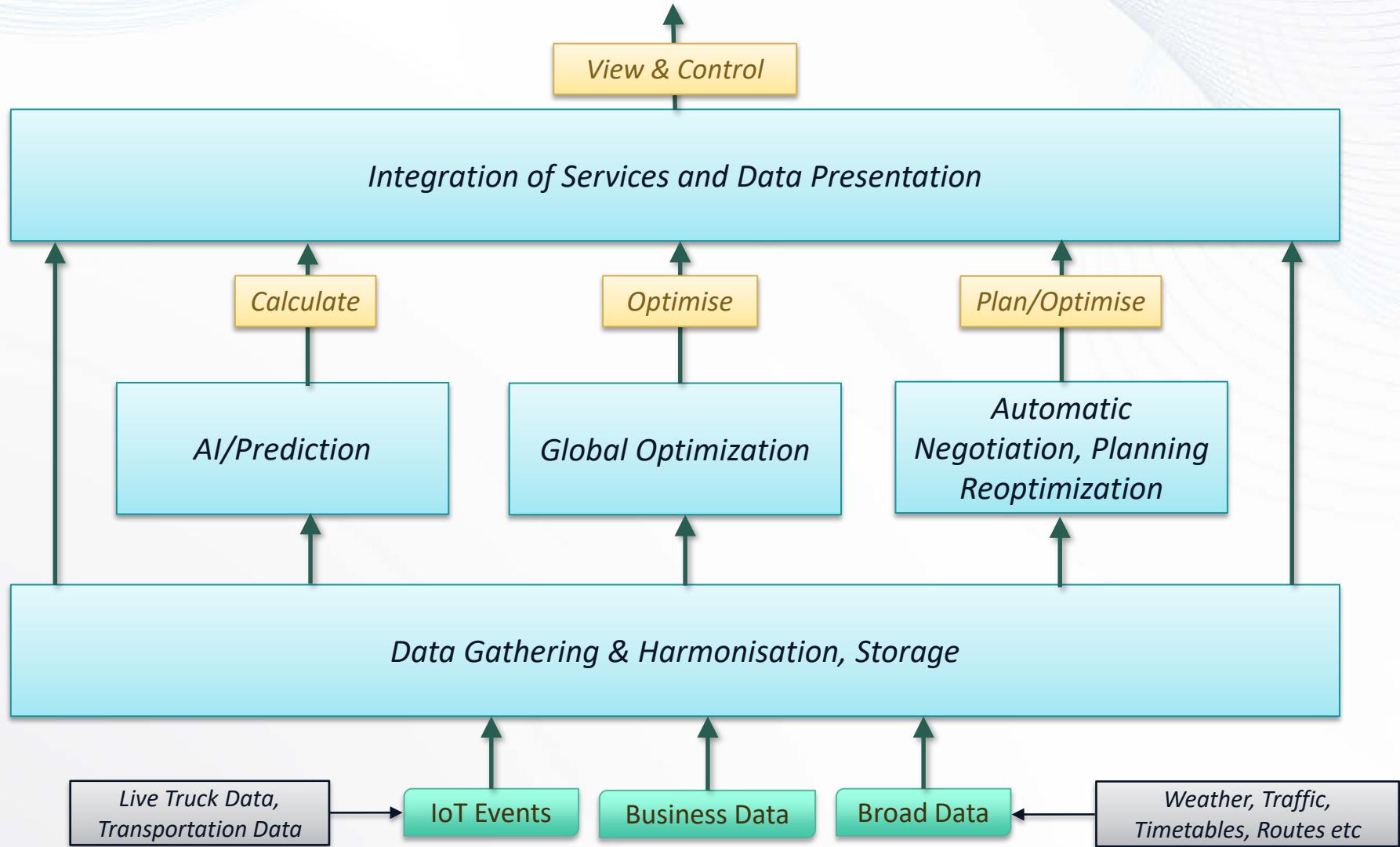
Christian Gengenbach

Reinhard Rust

Gaetano Formisano

- **The LOGISTAR system**
- **The “Planner Module”**
- **The “Real-Time-Monitoring Module”**

System Access – Cloud Based


- LOGISTAR offers services to planners and dispatcher of Logistics companies
- Cloud-Based – Access to web-app from any device on the internet

Architectural Structure

User's View

Web-based Usage

- LOGISTAR is just another **link in the browser**
- Starts with a Logon-Screen (authentication)
- **Role based** access (authorization)
- **Planner** screen and a **Real-Time-Monitoring** screen
- The **Planner** screen supports the users

What is the “Planner Module”?

- Logistic Planners search for „**horizontal collaboration**“ (e.g. journeys with orders of different companies/participants)
- **Planning process** ~2 days before the journey
- Orders must be sent to LOGISTAR **in advance**
- LOGISTAR calculates and proposes „**collaborative journeys**“
- Planners (of participating companies) **decide** independently upon their acceptance
- Overall decision is **immediately visible**

“Planner Module”

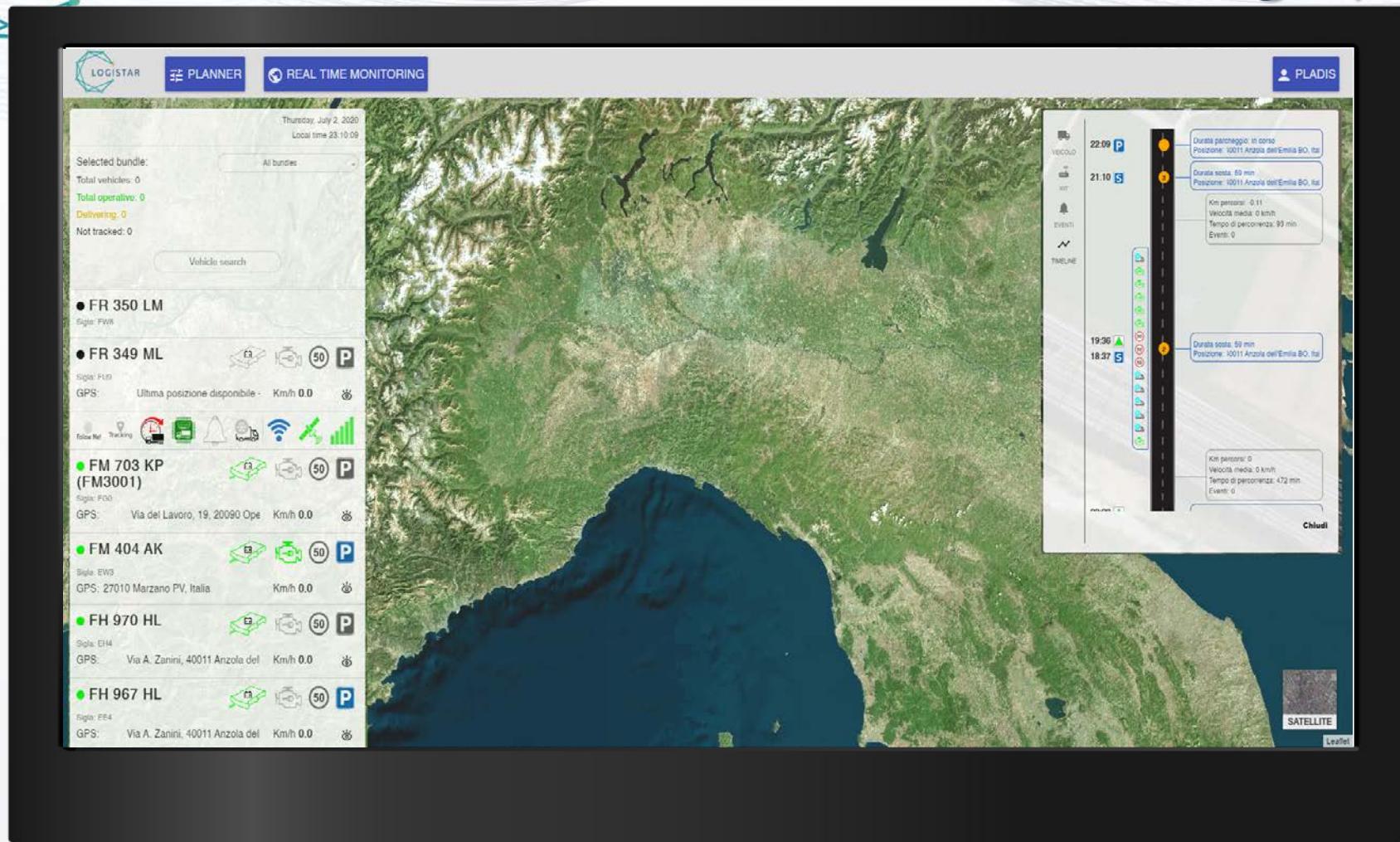
LOGISTAR Living Lab 1

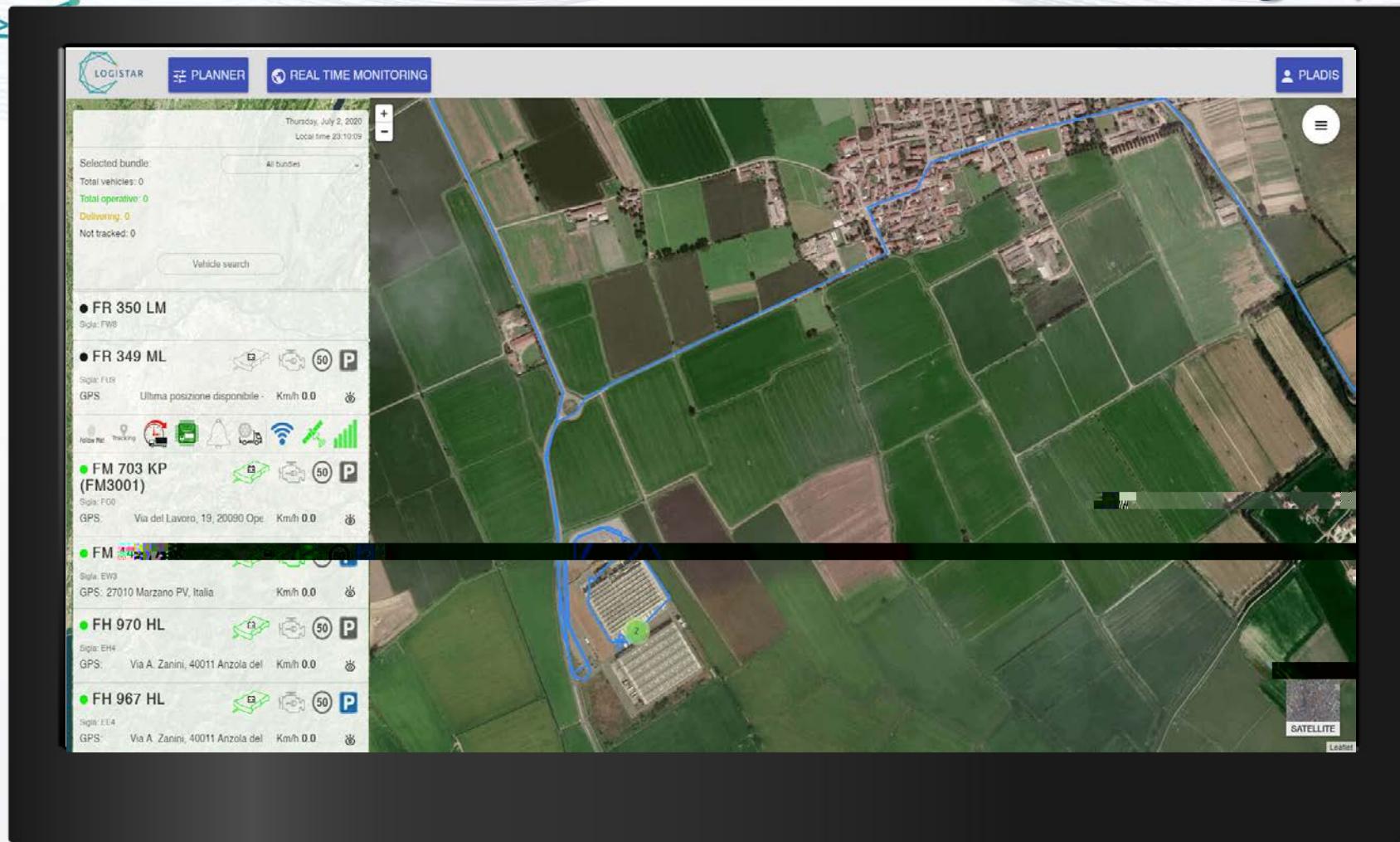
Current Stakeholder: nestle From: 7/27/2020 Until: 11/30/2020

LL1 LL2 HEARTBEAT

Journey Id	Date	Operator	Order count	Vehicle	↑ All Decisions	Actions	Own Decision
JRN-210-174	2020-07-28	pladis	10	License Plate	🕒	Best operator	✓
JRN-209-165	2020-07-27	Nestlé	10	License Plate LD 52 HZE	✓	Profitable	✓
JRN-210-171	2020-07-28	pladis	10	License Plate	✓	Profitable	✓

Owner	Shipment Nr.	Load Nr.	From	To	Weight	KPI	Value	Stakehol...	Status	Reason
pladis			AINTREE FACTORY	MIDLANDS_DC	20000	Cost	5.0	Nestle	✓	Profitable
pladis			MIDLANDS_DC	ONE STOP STORES LTD	12465	Distance	0.0	pladis	✓	Profitable
pladis			MIDLANDS_DC	ONE STOP STORES LIMIT...	1818	Time	0.0			
pladis			MIDLANDS_DC	G C BIRCHALL LTD	239	CO2	-6.0			
MATCH	YHWC6523	H220673	HH2	RDG	2405					


RELOAD TRIGGER CALCULATION


What is the “Real-Time-Monitoring”?

- Survey „**collaborative journeys**“ operated by other partners
- **Real-Time-Monitoring** starts with the operative journey
- Shows **extended information** besides current positions: orders, arrival times, loads, ...

“Real-Time-Monitoring” (1)

“Real-Time-Monitoring” (2)

Outlook: Planner Service for LL2

- Similar user interface as in Living Lab 1
- Focus on multimodal transports with multiple legs
- Under construction...

Logistar

https://logistar

Image not found NER Image not found BOARD 10/12/2020 Image not found IS

Order	Shipment-ID	From	To	Legs	Departure	Arrival	Goods
186751	S90716567	Venice	Manchester	5	13.12.2020	21.12.2020	Steel Coils

Journeys

Journey	Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Duration	Decision
J-001	Venice	Verona	Munich	Hamburg	Felixstowe	Manchester	5 days	Accept Reject
Schedule						KPI's		
Leg	From	To	Mode	Vehicle	Departure	Arrival		
1	Venice	Verona	Truck		13.12.2020	13.12.2020		
2	Verona	Munich	Rail		14.12.2020	14.12.2020		
3	Munich	Hamburg	Rail		15.12.2020	16.12.2020		
4	Hamburg	Felixstowe	Ship	MS LOGISTAR	19.12.2020	20.12.2020		
5	Felixstowe	Manchester	Truck		21.12.2020	21.12.2020		

J-002	Venice	Verona	Basel	Antwerp	Felixstowe	Manchester	6 days	Accept Reject

Value	Amount
Cost	-5%
CO2	-8%
Distance	+6%
Time	+5%

285612 S90871356 Bologna Manchester 4 13.12.2020 20.12.2020 Dry food

321655 S92761552 Padua Liverpool 4 14.12.2020 21.12.2020 Car parts

376235 S91882421 Venice London 3 14.12.2020 20.12.2020 Dry food

Image not found

Contact information

 software AG
Freedom as a Service

GENEGIS GI
Geographical Intelligence

dbh
dbh Logistics IT AG

CHEP
A Brambles Company

www.logistar-project.eu

Contact information of the speaker

@LOGISTAR_H2020

Logistar Project group

LOGISTAR project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769142.

Planner Service for LL1

- As for Living Lab 1 (Use Case 1) the Planner presents possible collaborative routes, which in total save money for one or more of the participating logistic companies.

Living Lab 1

Current Stakeholder: nestle From: 7/27/2020 Until: 11/30/2020

LL1 LL2 HEARBEAT

Journey Id	Date	Operator	Order count	Vehicle	↑ All Decisions	Actions	Own Decision
JRN-210-174	2020-07-28	pladis	10	License Plate	Best operator		✓
JRN-209-165	2020-07-27	Nestle	10	License Plate LD 52 HZE	Profitable		✓
JRN-210-171	2020-07-28	pladis	10	License Plate	Profitable		✓

Owner	Shipment Nr.	Load Nr.	From	To	Weight	KPI	Value	Stakehol...	Status	Reason
pladis			AINTREE FACTORY	MIDLANDS_DC	20000	Cost	5.0	Nestle	✓	Profitable
pladis			MIDLANDS_DC	ONE STOP STORES LTD	12465	Distance	0.0	pladis	✓	Profitable
pladis			MIDLANDS_DC	ONE STOP STORES LIMIT...	1818	Time	0.0			
pladis			MIDLANDS_DC	G C BIRCHALL LTD	239	CO2	-6.0			
nestle	YUJUCA32	U320K72	UJU9	POV	2405					

RELOAD TRIGGER CALCULATION

Sally Wright – Nestlé
Paul Stothard – pladis

The Story

We deliver for Nestlé

We need to collaborate more

- 29.6% of domestic road freight miles are empty (DfT Survey 2019)
- The 2008 Climate Change Act sets a legally binding target to reduce the UK's greenhouse gas emissions by at least 80% by 2050. Heavy goods vehicles are currently estimated to account for around 17% of UK GHG emissions from road transport and around 21% of road transport NOx emissions, while making up just 5% of vehicle miles (DfT Freight Carbon Review 2017)
- Transport Collaboration is a key action in both the DfT Freight Carbon Review and the FDF Ambition 25
- We're wasting a scarce resource and lot of money

How did we meet?

pladis

Speed Dating?

 Nestlé

We deliver for Nestlé

Speed Daters

P&G

Good Food, Good Life

Sainsbury's

Nisa Today's

Cadbury

ASDA

BOOKER

Coca-Cola Enterprises

Kimberly-Clark

MARS The **co-operative**

MUSGRAVE GROUP

UB

TESCO

DHL

Waitrose

Somerfield

Cott

Nestlé

We deliver for Nestlé

pladis

How did we meet?

S

?

coffee machine - IGD Watford

Our First Conversation

Pladis

... deliver for Nestlé


Our First Conversation

pladis

We deliver for Nestlé

Our First Conversation

We deliver for Nestlé

— 1 —

Our First Conversation

pladis

We deliver for Nestlé

Barriers To Collaboration

- **Physical**
 - vehicles, products, loading/unloading etc
- **Trailer Liveries**
- **Protection Of New Product Launches**
- **Financial parity**
- **Safeguarding Competitive Advantage**

Prerequisites For Success

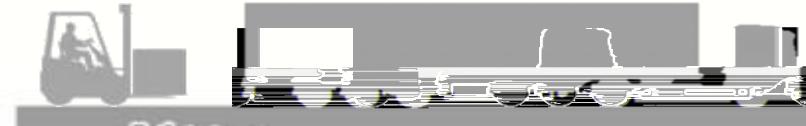
- Shared environmental vision
- Support for collaboration from the very top of both businesses

“We compete on the shop shelf, not in the back of a lorry”

- Pragmatism, flexibility, trust & honesty
- An independent 3rd party to stimulate, moderate and encourage collaboration

Barriers To Collaboration

- **Physical**
 - vehicles, products, loading/unloading etc
- **Trailer Liveries**
 - ruled out as an issue
- **Protection Of New Product Launches**
 - trucks loaded and sealed out of sight of driver
 - satellite tracking
- **Financial parity**
 - know your costs & be prepared to negotiate
- **Safeguarding Competitive Advantage**
 - set clear boundaries to your partnership

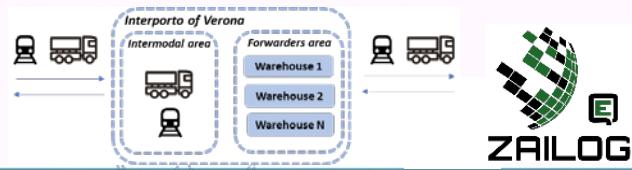


Good Food, Good Life

Good Business

We deliver for Nestlé

Thank you



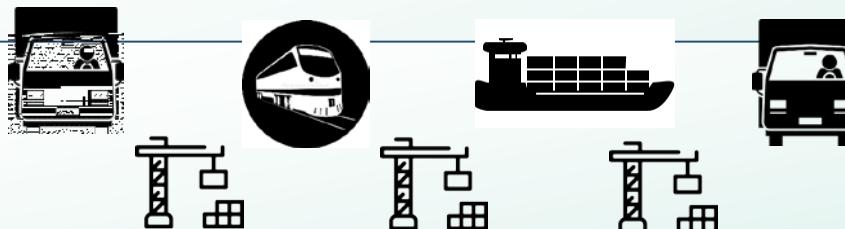
Living Lab 2 - Synchromodality

Codognotto – ZAILOG

Guido Piccoli – guido.piccoli@external.codognotto.com

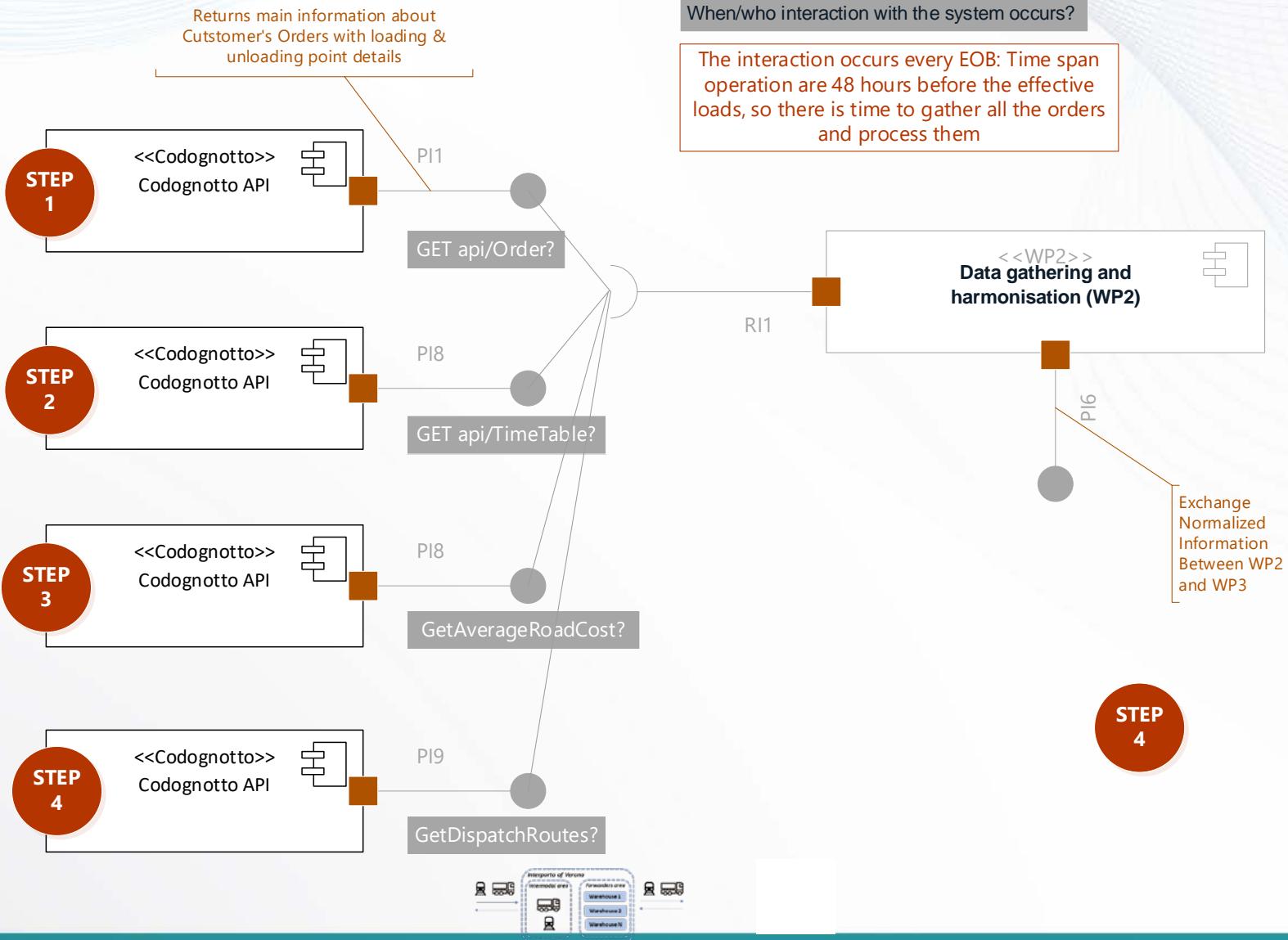
Our logistic flow

ROUTING Optimization


Dynamic assignation

SCHEDULING vs REAL TIME LOCATION

by IoT

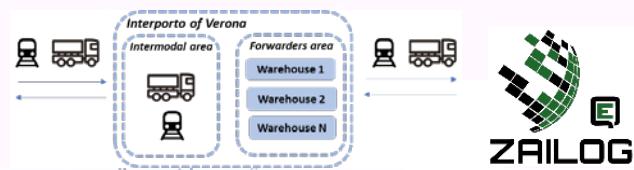

MONITORING ALERT Event RE SCHEDULING

DATA Statistics dispatching evaluation potential optimization and BI

API Interfaces Versus WP

Living Lab 2 - Syncromodality

Thank you


Matteo Codognotto matteo.codognotto@codognotto.com

Matteo Spagnolo matteo.spagnolo@codognotto.com

Paolo Lunardi p.lunardi@zailog.it

Alberto Milotti milotti.zailog@qevr.it

Guido Piccoli guido.piccoli@external.codognotto.com

Brambles

CHEP

A Brambles Company

... in a nature positive way.

Connecting
people with
life's essentials,
every day

As a pioneer of the
circular economy,
platforms
form the invisible
backbone of

Our
business model is

We serve our
customers by
minimizing negative
environmental impact.

Together, we've built better supply chains.

In 2020:

We achieved
vs 2015.

We achieved our
target through 100%
wood sourcing from
FSC/PEFC certified forests.

We coordinated
collaboration projects with
empty
transport distance.

For more details, see [Brambles' FY20 Sustainability Review](#)

But being “less bad” is no longer enough.

Through our 2025 targets we aim to create **Regenerative Supply Chains** that do more good than harm, and become ‘Positive’.

From Better
To Positive

Thought leadership:

Community partners:

**The Global
FoodBanking
Network®**

Barron's* Rated #1 most sustainable international company

MEMBER OF
**Dow Jones
Sustainability Indices**
In Collaboration with RobecoSAM

96th percentile in industry category

Rated A in Circular Economy Assessment by
Ellen MacArthur Foundation

MSCI Maximum AAA rating

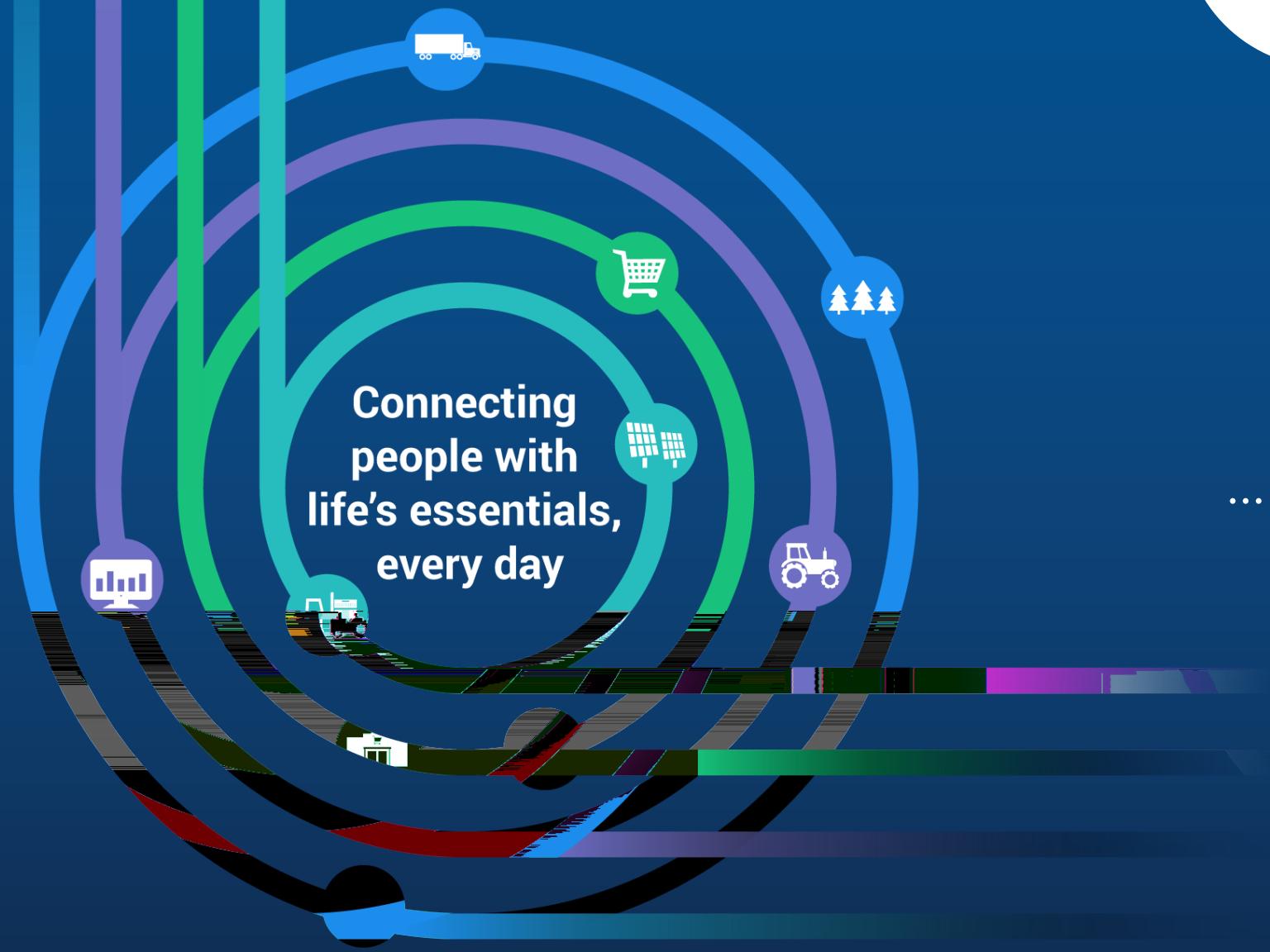
Constituent of the FTSE4Good index 2014-2020

Published by Dow Jones, sister publication to The Wall Street Journal.

To pioneer regenerative supply chains,

.

Brambles **CHEP**
A Brambles Company


Brambles

CHEP

A Brambles Company

... in a nature positive way.

Connecting
people with
life's essentials,
every day

Digital Transformation is key

to reduce inefficiencies and make EU Supply Chains sustainable for the future

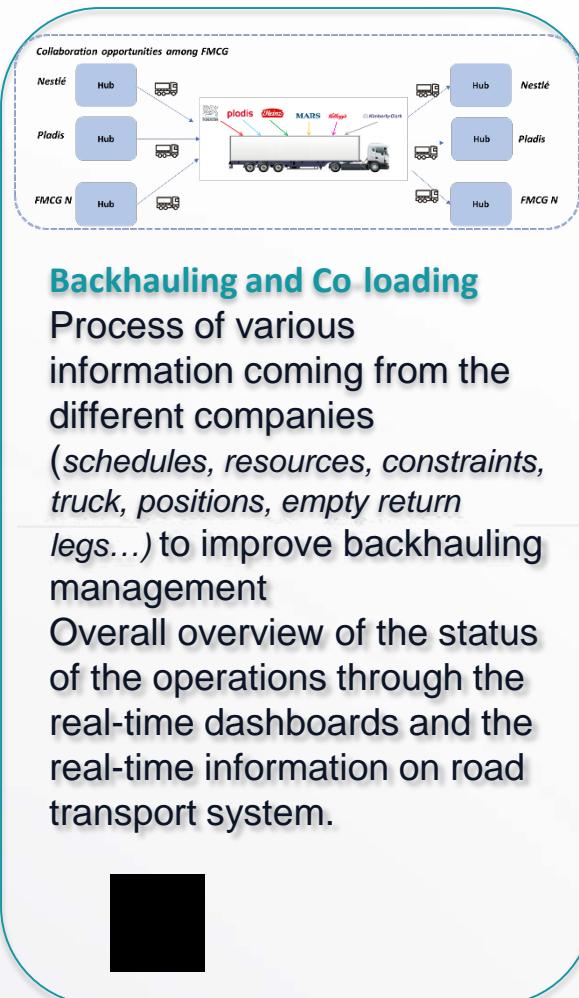
Fostering Horizontal Collaboration

among SC partners is
vital and part of Logistar
and Brambles DNA

Circular Economy

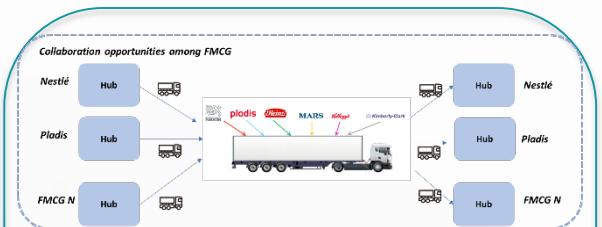
Sharing and Reusing
Models Enable New
Opportunities

User Group Meeting


Living Lab 3 (Virtual Living Lab)

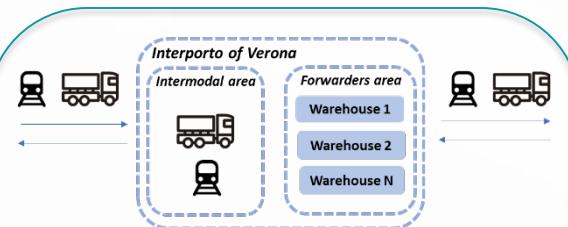
Ahlers Antwerp

9th of December 2020


The initial Living Labs

LOGISTAR services will be **tested under real operation environment** in three Living Labs

The New Living Labs


LOGISTAR services will be **tested under real operation environment** in three Living Labs

Backhauling and Co loading

Process of various information coming from the different companies (schedules, resources, constraints, truck, positions, empty return legs...) to improve backhauling management

Overall overview of the status of the operations through the real-time dashboards and the real-time information on road transport system.



Synchromodalit

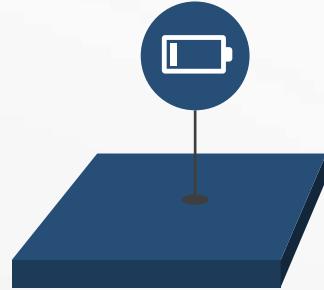
Real time re-planning due to disrupting events: corrective and preventive

Planning of synchromodal routes basing on real time events.

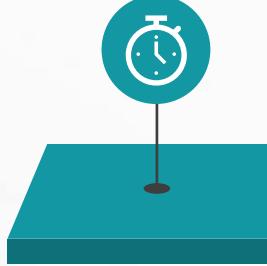
Dynamic assignation of freight transport networks. Real time status on goods movements: position of vehicles, arrival time of cargo fleets.

The reduction of waiting times through live vehicle tracking and a reliable prediction of the ETA combined with a sophisticated software solution to manage and allocate slots dynamically is key for a smooth and efficient transport operation; as per our experience this would also be a key enabler for efficient Horizontal Transport Collaboration projects.

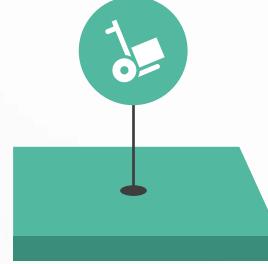
Virtual Living Lab


Real time planning of resources looking for transport synergy and bundling opportunities.

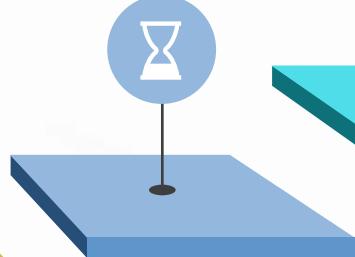
Real-time alerts and recommendations to take action, facilitating the decision-making process.

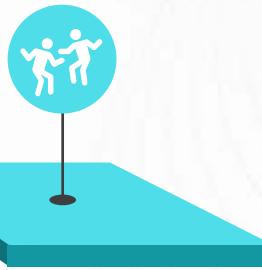

Going from theory to practice

- The study previously shown was conducted based on historical data. Similar to what is happening in Work Package 1.
- The next step towards implementation is to test a system that can bundle loads in real time (when orders come in)
- With this scale and type of shipments this use case was an ideal fit for our virtual living lab:
 - Big network: can Logistar cope with this scale?
 - Bundling potential: can Logistar achieve savings that are in line with the strategic study?
 - Future interest: Can our customer become a potential user of the Logistar system in the future?


Outcome

Empty running


Asset utilisation
how many hours
the vehicle is used
compared to the
maximum
available hours


Vehicle idle
time

Logistic costs

the fuel
consumption or
emission of
carbon emissions

~~Deliver timeliness
the delivery was
made within the
customer delivery
time window~~

Stress test the
system

Questions?

s software AG

dbh
dbh Logistics IT AG

