

# Georgia Physical Internet Center Supply Chain & Logistics Institute

Generating space clusters for urban logistics in hyperconnected networks

**Cyrus Hettle** 

Louis Faugère

Simon Kwon

**Swati Gupta** 

**Benoit Montreuil** 

IPIC 2021: International Physical Internet Conference

### **Outline**

**Problem definition** 

Methodology

Integration with network design

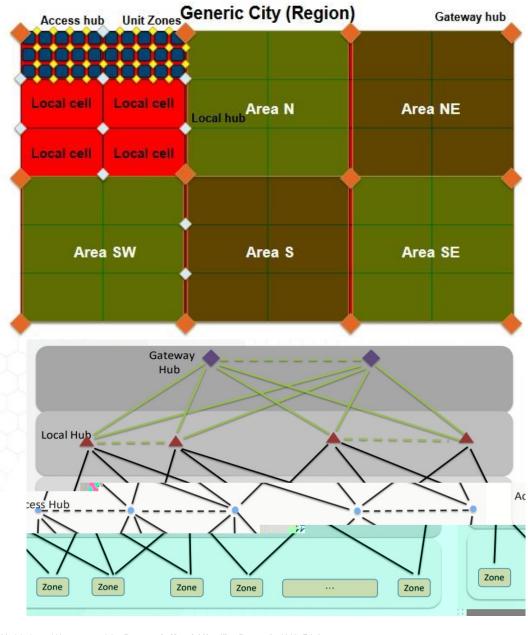
Striping warm starts and implementation

**Experimental results** 



### **Problem definition**




### **Problem definition**

### Space clusters in hyperconnected logistics

Given a set of small atoms (unit zones), cluster them into larger local cells, and cluster the local cells into urban areas

Clusters are incident to hubs and define feasible zone-to-hub and hub-to-hub flows

The space clustering structure is critical to multi-tier web operations, and may evolve over time





### Goal

### Find a good solution to the space clustering problem

A good space cluster design can be used to structure an efficient, resilient, sustainable network

#### Each cluster should be

**Contiguous** 

**Compact** geographically

Balanced (roughly equal demand in terms of logistic work)

Resilient



### Modeling and input

### Represent map of unit zones as graph

vertex set is the set of UZ edges represent pairs of adjacent UZ

### List local and gateway hubs

capacity thresholds
optional additional modules with capacities and prices
neighborhood of unit zones within adequate distance to be served by

### **Estimate operating costs**

for each pair of unit zones for each pair of unit zone , hub

#### **Estimate demand**

single number for each pair of unit zones



## Methodology



### MIP decision variables and objective

### **Assignment variables**

, : UZ in local cell , urban area

, : UZ and both in local cell , urban area

#### Flow variables

, vertical flow between and through local or gateway hub

: horizontal flow between and

$$OBJ = \sum_{i,j,h} (\lambda_{ih} + \lambda_{jh}) d_{ijh}^{LH}$$

$$+ \sum_{i,j,h} (\lambda_{ih} + \lambda_{jh}) d_{ijh}^{GH}$$

$$+ \sum_{i,j} (\gamma^C f_{ij}^C + \gamma^A f_{ij}^A)$$

$$+\delta \sum_{i,j,k} \lambda_{ij} e_{ijk}^{C}$$

$$+\sum_{l,h}\beta_l\,b_{lh}$$

$$+\sum_{hm}\pi_{hm}Z_{hm}$$

Cost of vertical flow through local hubs

Cost of vertical flow through gateway hubs

Cost of horizontal flow

Compactness measure

Penalties for exceeding hub capacity (balance and resiliency)

Cost of adding modules to hubs



### MIP constraints: overview

Assignment: each UZ is in a unique local cell and urban area

Local cells are properly clustered into urban areas

Unit zone in local cell can send flow through hub if and only if intersects

Flow: all demand is met

Flow between and can be vertical, or horizontal if and in same cluster

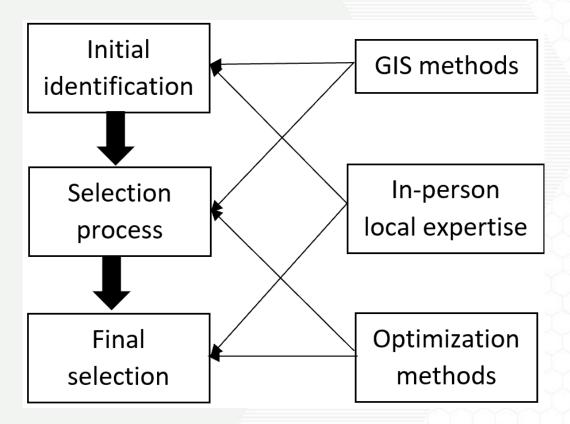
**Resiliency:** for each pair and at most parameter , proportion of the flow passes each local/gateway hub

Contiguity: each cluster is a connected region

Implemented using the rooted tree flow constraints introduced by Shirabe, 2009

#### Capacity:

Depending on local constraints, additional modules may be added at specified cost to increase capacity




## Integration with network design



### **Hub candidate selection**

Input: very large set of points in the city
Output: smaller set of candidates for
access and local hubs



### **Network design**

Input

demand profile

hub candidates

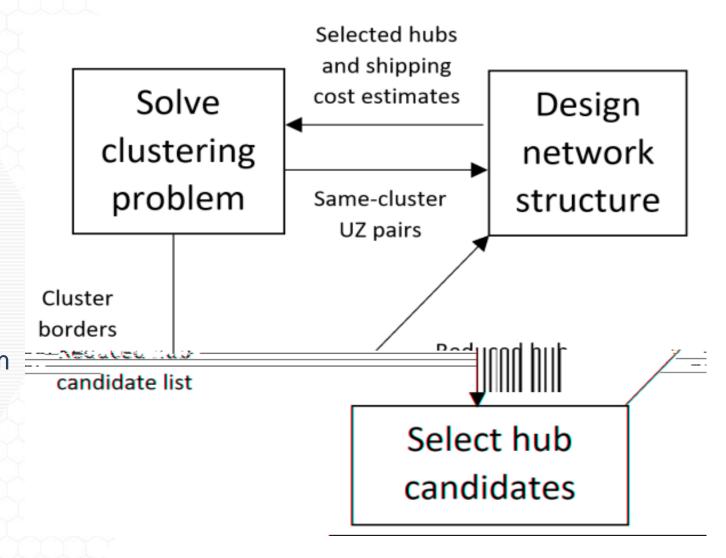
feasible arcs (from clustering)

local constraints

Output

set of opened hubs and arcs

feasible flow pattern




### High-level iterative design

Space clustering complements and integrates with hub candidate selection and network design problems

### High level method:

Solve each optimization problem in turn, using its output as input to the next problem





## **Striping**



### Warm-starts from striping

The dynamic striping algorithm of Hettle et al. (2021) for graph partitioning can generate clusterings to use as warm starts for the MIP

#### **Input:**

Graph with vertex weights for all

Desired number of clusters

Balance parameter (all clusters have total demand within fraction of

average)

Hamiltonian path on

Obtained using uncrossing approximation algorithm for the traveling salesman problem

#### **Output:**

Balanced, compact, contiguous clustering on

Clustering is used to set flow values in warm-start

Runs in time, so can be quickly repeated with different path/parameters to obtain multiple initial configurations



## **Experimental results**



### **Experiment design**

We test the model on part of the SF Express network in Shenzhen

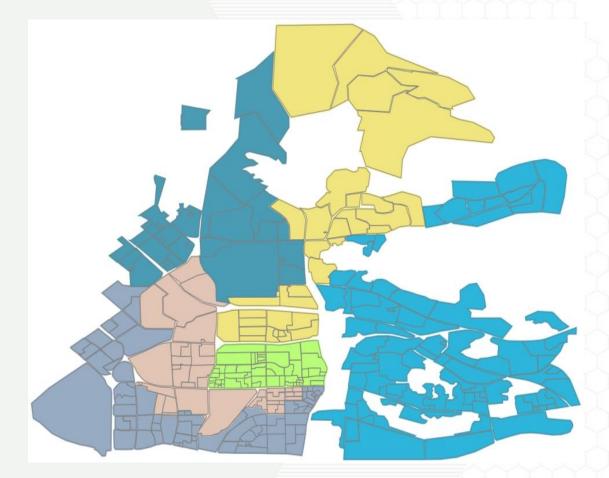


#### **Input and warm start**

### Clustering

Set of local cells in the southwest of Shenzhen, created using the striping method

#### **Demand profile**


Based on customer behavior and SF Express market share Over 80% of demand associated is intercity, going to or from a gateway hub

**Hub locations and capacities** 

The Hamiltonian path, starting at the northwest (light) and ending at the east (dark)



## **Experiment results**





|                | Flow cost            | Compactnes ss        | Balance           | Modules<br>s        | Total cost           |
|----------------|----------------------|----------------------|-------------------|---------------------|----------------------|
| Warm-start     | 4.54 10 <sup>8</sup> | 8.32 10 <sup>7</sup> | 2 10 <sup>7</sup> | 2 10 <sup>7</sup>   | 5.77 10 <sup>8</sup> |
| clustering     |                      |                      |                   |                     |                      |
| New clustering | 4.32 108             | 7.62 10 <sup>7</sup> | 2 10 <sup>7</sup> | 1.5 10 <sup>7</sup> | 5.43 10 <sup>8</sup> |



CREATING THE NEXT®



### **Conclusion and Future Steps**

The space clustering problem in hyperconnected logistic networks can be efficiently solved using a MIP

Geographic compactness and contiguity, hub demand capacity, and resiliency are all effectively considered

Clustering effectively combines with and improves the tractability of methods for hub selection and network design

Increased use of additional heuristics may further improve performance, particularly in large instances

In-depth optimization experiments iterating between space clustering and network design under alternative robust service time targets

Simulation-based experimentations under stochastic scenarios with alternative integrated space clustering, network design and operations solutions

