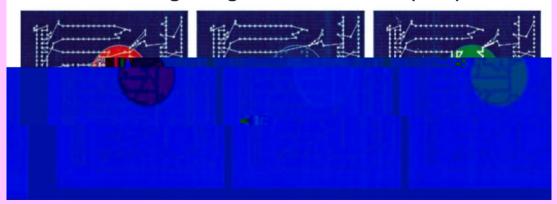


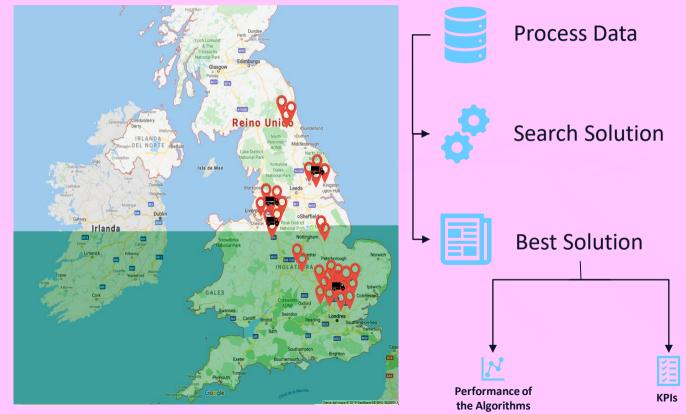
Collaborative optimization model to solve i horizontal collaboration among stakeholders or using VRP

LOGISTAR - Enhanced data management techniques for real time logistics planning and scheduling

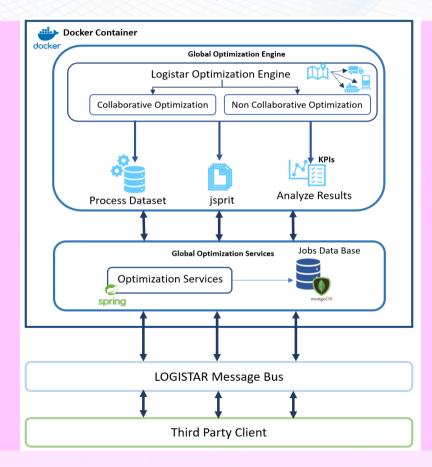


LOGISTAR: Global optimization

The LOGISTAR project focuses on optimizing distinct multi-point route VRP problems:


- Capacity and type of good restricted
- Co-loading, pickup and delivery restricted
- Multi-depot, backhauling and time-dependent

Large neighborhood Search (LNS)



LOGISTAR: Global optimization

LOGISTAR: Global Optimization Module Architecture

LOGISTAR: Global Optimization Module Architecture

Selected JSprit framework as the optimization engine

- https://jsprit.github.io/
- Java-based lightweight and flexible framework based on LNS
- Scalates well to distinct VRP variants

Implementation of the model

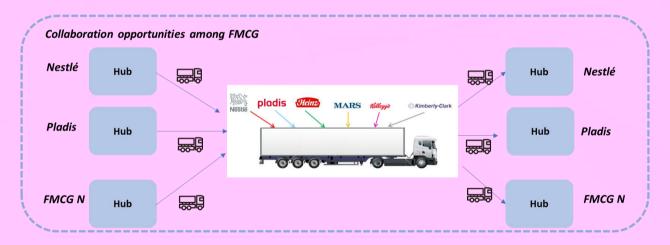
- Selection of routing engine
- Implementation of cost function
- Implementation of new restrictions
- Evaluation on data provided by stakeholders

Create VRP	Create Types	Create Vehicles	Assign Vehicles	Build the fleet	Load Data of Service	Define and Execute
	Vehicles	Vernicies	Verlicies		of Service	Algorithm

Linving Labs

- Living Labs
 - Backhauling and Co-loading
 - Process of various information coming from the different companies
 - schedules, resources, constraints, truck, positions... empty return legs...
 - The operators will have an overall overview of the status of the operations through the real-time dashboards and the real-time information on road transport system.

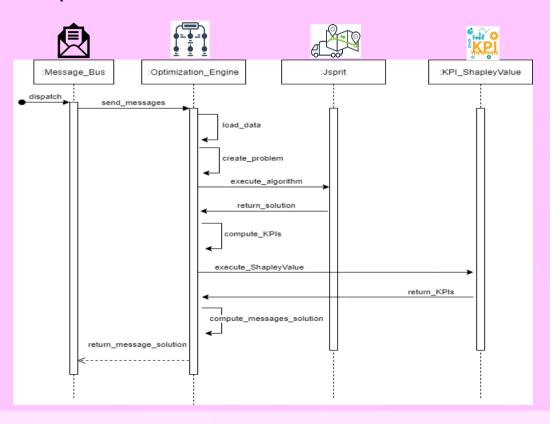
Synchromodality


- Real time re-planning due to a disrupting event: corrective and preventive
 - Planning of synchromodal routes basing on real time events.
 - Dynamic assignation of freight transport networks.
- Real time status on goods movements: position of vehicles, arrival time of cargo fleets.

Living Lab 1

Backhauling and Co-loading

To improve backhauling management Overall overview of the status of the operations



Living Lab 1

Optimization process flow

Input Data

```
"vehicleFleet":
     "livingLab": "LL1",
     "dav": "2021-04-22",
                                                            "identifier": "NE-TR-1",
                                                            "stakeholderIdentifier": "nestle",
     "orderList": [
                                                            "type": "Truck",
     "vehicleFleet": |
                                                             "maxAllowedWeight": (
                                                              "numericValue": "26000.0",
                                                              "unit": "kg"
"orderList": [
                                                             "capacity": {
                                                              "numericValue": "2600.0",
     "identifier": "f1cb1633-32b8-3511-ab33-b8767e0777ac".
                                                              "unit": "%"
     "referenceId": "nestle80865078485",
     "issued": "2021-04-25T09:10:49+01:00".
     "messageStatus": "UPDATE".
                                                             "capacityFootprint": {
     "stakeholderIdentifier": "nestle".
                                                              "numericValue": "5200.0",
     "loadNumber": "H249753",
                                                              "unit": "%"
     "shipmentNumber": "TXHJ8833".
     "deliveryNumber": "0865078485",
     "pickupLocation": {
       "lat": "52.5243186419381",
       "long": "-1.70110855854998",
      "prefLabel": "HH2".
       "address": {
        "addressLocality": "COLESHILL",
        "streetAddress": "HAMS HALL DISTRIBUTION PARK".
        "postalCode": "846 1AL"
     "dropOffLocation": {
      "lat": "53.5167617797852".
      "long": "-2.65866208076477",
       "prefLabel": "WIJ",
       "address": {
        "addressLocality": "WHEATLEA IND EST".
        "streetAddress": "WINCATON DC (JOLLYES)",
        "postalCode": "WN3 6BB"
     "loadInterval": (),
     "deliveryInterval": {
      "hasBeginning": "2021-04-22T10:00:00+01:00",
      "hasEnd": "2021-04-22T10:00:00+01:00"
     "deliveryArrivalTime": "2021-04-22T09:30:00+01:00",
     "totalWeight": {
       "numericValue": "9925.7",
       "unit": "kg"
     "palletUtilization": {
```

Living Lab 1

Output Data

```
"Total Drops" : 40,
"Empty Running" : 2813.08.
"DistanceEm" : 5968.34.
"TimeH" : 173.43,
"Solution Cost" : 25220.43,
"Total Routes" : 22
"Data Struct" : [ [ {
  "Company" : "Pladis",
  "Vehicle FRw Weight" : 0.51,
  "DistanceKM" : 52.87,
  "Vehicle FRm Weight" : 0.03,
  "Vehicle FRm" : 0.06.
  "TimeH" : 2.98,
  "Vehicle Id" : "Pladis Truck 1-C"
  "Vehicle FRw Footprints" : 0.51,
  "Vehicle FRm Pallets" : 0.06,
  "Coordinate Star and End" : "[x=-
  "Empty Running" : 26.57,
  "Depot" : "LE65 1PF",
  "Vehicle FRw Pallets" : 0.49,
  "Vehicle_FRm_Footprints" : 0.04,
  "Vehicle FRw" : 0.51
 "Zip Code From" : "LE65 1PF",
  "End Time": 420.46714814845257,
  "Arr Time" : 420,
  "Shipment" : "Drive",
  "From" : "[x=-1.459583][y=52.7687
  "To" : "[x=-1.4608][y=52.76516]",
  "Zip Code To" : "GBLE65.1",
  "Distance": 420.4333336072918
  "Order" : 1.
  "Time Window End" : 539,
  "Coordinate Location" : "[x=-1.46
  "End_Time" : 480.46714814845257,
  "Arr Time" : 420.46714814845257,
  "Foot_Prints" : 0,
  "Number Pallets" : 1,
  "Shipment" : "PickupShipment",
  "Time Window Start" : 0,
  "ID" : "P-9-CUST86193615",
  "Weight" : 0.227
```


Living Lab 1

Results of a test case where a collaborative solution is created

01:00 - 02:00	[x=-1.4][y=5.7]	Pickup		(1p 0fp 0.23w - 01:00 h) - TW:(00:00-08:59) FILL:(1p - 0fp)
01:00 - 02:00	[x=-1.4][y=5.7]	Pickup		(2p 1fp 0.64w - 01:00 h) - TW:(00:00-08:59) FILL:(3p - 1fp)
02:00 - 02:42	GBLE65.1	Drive	B46 1AL	(38 km - 00:42 h)
02:42 - 03:42	[x=-1.7][y=5.5]	Pickup		(18p 9fp 9.98w - 01:00 h) - TW:(00:00-06:45) FILL:(21p - 10fp)
02:42 - 03:42	[x=-1.7][y=5.5]	Pickup		(14p 7fp 7.53w - 01:00 h) - TW:(00:00-06:45) FILL:(35p - 17fp)
02:42 - 03:42	[x=-1.7][y=5.5]	Pickup		(13p 6fp 6.66w - 01:00 h) - TW:(00:00-06:15) FILL:(48p - 23fp)
03:42 - 05:45	B46 1AL	Drive	\$80 3EG	(111 km - 02:03 h)
05:45 - 06:45	[x=-1.0][y=5.2]	Delivery		(13p 6fp 6.66w - 01:00 h) - TW:(05:45-06:45) FILL:(35p - 17fp)
05:45 - 06:45	[x=-1.0][y=5.2]	Delivery		(14p 7fp 7.53w - 01:00 h) - TW:(06:15-07:15) FILL:(21p - 10fp)
05:45 - 06:45	[x=-1.0][y=5.2]	Delivery		(18p 9fp 9.98w - 01:00 h) - TW:(06:15-07:15) FILL:(3p - 1fp)
06:45 - 07:53	S80 3EG	Drive	GBLE11.5	(60 km - 01:07 h)
07:53 - 08:59	[x=-1.2][y=5.7]	Delivery		(2p 1fp 0.64w - 01:05 h) - TW:(08:59-09:30) FILL:(1p - 0fp)
07:59 - 08:59	[x=-1.2][y=5.7]	Delivery		(1p 0fp 0.23w - 01:00 h) - TW:(08:59-09:30) FILL:(0p - 0fp)
08:59 - 09:28	GBLE11.5	Drive	LE65 1PF	(26 km - 00:29 h)

Motivation for intermodality

- Growing transport volumes call for a shift in transport modes
 - Congestion, climate change and air pollution
- Move transportation volume from road-centered towards other alternatives
 - Improve the characteristics of logistic chains

Intermodality

Aims to integrate transport volumes and modes

- bundling of flows, switching the transport mode
- requires close cooperation between actors
- In line with EU transportation policy objectives, to foster a shift from road to rail
 - Reduce dependence on imported oil
 - Cutting carbon emissions by 60%

Intermodal containers

To enable intermodality we rely on intermodal containers

- Without handling the freight itself during changes of modes
 - There is no reloading nor unloading
- It enables efficient and effective solutions to share costs
 - Based on cooperation and integration
- Containers are used to transport materials across intermodal hubs

Optimization process

The approach is based on the optimization of a 3-way process

- Pre-haul (pickup process)
- Long-haul (door-to-door transit of containers)
- End-haul (delivery process)
 - Pre-haul and end-haul are usually road-based, while long-haul is considered for intermodal optimization
 - Objetive is to select intermodal routes and determine container flow so that a performance measure is optimized
 - Non trivial process

Optimization heuristic

Backtrack algorithm is widely used in transportation optimization as a general algorithm

- Some modifications to the general algorithm
- Branching factor is not static for all means of transport
- End-haul (delivery process)

Contact details

www.logistar-project.eu

LOGISTAR project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769142.